

L. Groening¹, S. Mickat¹, A. Adonin¹, W. Barth^{1,3}, X. Du¹, Ch.E. Düllmann^{1,3,4}, H. Hähnel²,
R. Hollinger¹, E. Jäger¹, M.S. Kaiser¹, U. Ratzinger², A. Rubin¹, P. Scharrer^{1,3,4}, B. Schlitt¹,
G. Schreiber¹, A. Seibel^{1,2}, R. Tiede², H. Vormann¹, C. Xiao¹, C. Zhang¹

¹GSI, D-64291 Darmstadt, Germany
 ²Goethe University of Frankfurt, D-60438 Frankfurt, Germany
 ³Helmholtz Institute Mainz, Mainz, Germany
 ⁴Johannes Gutenberg-University, Mainz, Germany

- FAIR Project
- UNIversal Linear ACcelerator UNILAC

G 5 1

Upgrade Activities

FAIR Facility for Antiproton and Ion Research

UNILAC

GSI today

p-Linac

HITRA

CRYRING

Primary Beams SIS 100

- 5 × 10¹¹ U²⁸⁺ ions/s; 1.5 GeV/u
- 10¹⁰ / s ²³⁸U⁹²⁺ up to 11 GeV/u
- 2 × 10¹² protons/s; 29 GeV

Secondary Beams

- range of radioactive ion beams up to 1.5 - 2 GeV/u; up to a factor of 10'000 higher in intensity than presently
- antiprotons 1.5 14.1 GeV

Storage and Cooler Rings

- radioactive ion beams
- antiproton beams:
 - CR: 10⁸ antiprotons; 3 GeV
 - HESR: 10¹⁰ antiprotons; 1.5 14.1 GeV

Technical Challenges

planned

FAIR

HESR

PANDA

APPA Cave

SIS-18

Rapid cycling superconducting magnets

SIS-100

RIB Target

GSI

CBM

SUPER-FRS

p-bar Target

- rf-systems and control
- Beam lifetime (dynamic vacuum)

NUSTAR

Cooled beams

UNIversal Linear ACcelerator UNILAC

design parameters

GSI

UNILAC: Available Beams

statistics 2012

2013-2015 saw considerable maintenance works

GSI

UNILAC: Achieved Uranium Current

• June 2007: current of 6.0 mA ²³⁸U²⁷⁺ along the transfer to SIS18 was achieved

- Nov 2014: 7.8 mA w @ 18 mm mrad ²³⁸U²⁸⁺ at stripper section
- i.e. norm. hor. brilliance of 8 mA/µm (prstab 18 040101 2015)
- although UNILAC did not achieve yet the target value of 15 mA, this machine keeps holding the uranium intensity world record and might do so for many years

G 5 1

TUA1I02: L. Groening et al., Upgrade of the UNILAC for FAIR

High Pressure Pulsed Gaseous Stripper

High Pressure Pulsed Gaseous Stripper

Pulsed gas cell setup (2015)

Uranium pulsed beam world record thanks to new set-up

see dedicated talk on set-up by P. Scharrer (TUA1C01)

GSI

Linac Emittances vs effective Ring Acceptances

 $\mathcal{E}_x \approx \mathcal{E}_y$

"round" beam is provided by injector linac

TUA1I02: L. Groening et al., Upgrade of the UNILAC for FAIR

Beam Line for Testing Emittance Transfer (EmTEx)

key components:

- charge stripper placed at center of a solenoid
- skew triplet to remove inter-plane correlations

TUA1I02: L. Groening et al., Upgrade of the UNILAC for FAIR

- design of an emittance transfer section in front of post-stripper DTL is ongoing
- if it will be built depends on the success of other upgrade activities:
 - source extraction system
 - LEBT
 - RFQ
 - MEBT
 - gaseous stripper
- if these measures will not be sufficient, the emittance transfer will be included

GSI

4d Beam Diagnostics for ²³⁸U²⁸⁺ at 11.4 MeV/u

- slit/grid emittance meters just measure the (x,x') & (y,y') planes separately
- correlations are not measured
- $\begin{bmatrix} \langle xx \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle \\ \langle x'x \rangle & \langle x'x' \rangle & \langle x'y \rangle & \langle x'y' \rangle \\ \langle yx \rangle & \langle yx' \rangle & \langle yy \rangle & \langle yy' \rangle \end{bmatrix} = \begin{bmatrix} 12.79 & 1.89 \\ 1.89 & 0.62 & ? \\ ? & 32.18 & 3.49 \\ ? & 3.49 & 0.46 \end{bmatrix}$
- pepper pots have not been applied successfuly for ions > 150 keV/u
- complete 4d 2nd moments matrix has been measured at GSI UNILAC
- Using EmTEx: scans with skew quadrupoles were performed

TUA1102: L. Groening et al., Upgrade of the UNILAC for FAIR

New Alvarez Cavities

• improved shapes of drift tube end plates

	HSI (RFQ,IH1,IH2)	-		Poststripper (Alvarez
		10 200		
[<u>5</u>	36 MHz	Gas	Stripper	108 MHz

- optimizition of shunt impedance per surface field
- "freehand-shape"

	tank I	tank II	 tank V
energy range [MeV/u]	1.39 – 3.30	3.30 - 5.39	- 11.4
# cells	55	45	
L _{gap} / L _{cell}	0.26	0.23 - 0.25	
rf-length [m]	10.7	12.2	
E _{surf,max} [E _K]	1.03	0.97	1.03
P _{loss,MWS} [MW]	0.878	0.862	
P _{beam} [MW]	0.243	0.266	
<z<sub>eff> [MΩ/m]</z<sub>	14.0	15.0	

DTL Cavity Stem Orientations

1.2e+006 1.15e+006

1.1e+006

1.05e+006

9.5e+005 9e+005

1e+006

[m//]

drift tubes kept by two stems (as today):

- provision of quad current and water cooling of tubes & quads
- well-considered orientations of stems mitigate parasitic TM rf-modes

robustness of field flatness wrt perturbations

1:3 scaled cold model to probe experimentally:

- adjustable stem orientation
- exchangeable drift tube surfaces

"!" Stem

"Cross" Stem

Electric field along beam axis for Alvarez Tank3

"V" Stem

stem, nearest mode:+1.6MHz

stem, near

Cross Stem, nearest mode:+5.7MHz

n

1170

Stronger Transverse Focusing

• today transv phase advance is limited to $\sigma_0 = 53^\circ$ (zero current) with ²³⁸U²⁸⁺

• bad working point in Hofmann's stability chart

Asymmetric Transverse Focusing (optional)

- focusing shall preserve beam emittance ratio (flatness)
- space charge drives re-equilibration of emittances
- can be mitigated by stronger focusing in ver plane
- ver focusing quads with stronger gradients wrt hor ones
- few % of increase of ver quad gradients is sufficient

TUA1I02: L. Groening et al., Upgrade of the UNILAC for FAIR

DTL: Alvarez vs IH-Mode

Alvarez

- state-of-the-art at high current proton/ion linacs
- in operation at GSI
- mechanical dimensions
- · needs more quads and power converters
- analytical beam dynamics model available
- higher beam quality

IH (Interdigital H-Mode)

GSI

- in operation at GSI since 20 years
- mechanical dimensions
- high efficiency wrt operating cost / acceleration
- needs less quads and power converters
- no analytical beam dynamics model available
- lower beam quality

IH-DTL Design

- Six IH-DTL cavities @ 25 m total length
- Efficient KONUS beam dynamics concept
- Optimized transverse focusing for lowest emittance growth

RMS emittance for different transverse phase advances

energy range [MeV/u]	1.4 – 11.4
gap voltages [MV]	0.4 – 1
on axis field [MV/m]	< 11
mag. lens gradients [T/m]	45 – 50
# gaps per 0°-section	7 – 17
# gaps per rebsection	4 - 6
phase advance per period	< 90°

IAP Frankfurt, H. Hähnel

GSI

IH-DTL Beam Dynamics

- simulated 16.7 mA U²⁸⁺ with 15 mA within 1 mm mrad at the exit (almost FAIR requirement)
- emittance growth :
 - 30% transv.
 - 12 % long.

IAP Frankfurt, H. Hähnel

IH-DTL CST Simulation

- 21 gaps (0°- and rebunching-section)
- optimization of field distribution by
 - girder undercuts

3e+006 2.5e+006 2e+006

> 1e+00 5e+00

1,5

1

0,5

0

0 2

Gap voltage [arb. **o** unit] **1**

- tilted outer stems
- drift tube dipole correction
- power requirement calculated based on CST simulations (table)

ontude of Field Along Curve: hearn av

2000

6

4

TUA1I02: L. Groening et al., Upgrade of the UNILAC for FAIR

⁸gap humber 14 16 18 20 22

IAP Frankfurt, H. Hähnel

GSI

Estimate of attainable ²³⁸U²⁸⁺ Performance & Schedule

2014/15	concepts
2015	prototyping conceptual design
2016/17	final design
2017/18	tendering
2018/19	fabrication
2020	assembly
2021	commissioning

GSI

beamline section	current change factor	rel. emit. growth [%]	brilliance change factor	curre	nt [mA]	hor. emittance (norm., tot.90%)	upgrade activity
				/	. 18,0	0,38	source development
LEBT + RFQ	0,9	15	0,78	/			RFQ upgrade
					16,2	0,44	
MEBT + IH-DTL	0,9	70	0,53				new MEBT
				$\langle \rangle$	14,6	0,74	
gaseous stripper (to A1)	1,26	15	1,10				routine operation pulsed stripper
					` 18,4	0,85	
EmTEx	0,9	-60	2,25				installation
					16,5	0,34	
Alv-DTL, transf. to SIS18	0,85	50	0,57				new DTL
					14,1	0,51	
target value					15,0	0,56	

Summary

- dedicated uranium LEBT
- increase of stripping efficiency using pulsed H_2 jet \gtrsim 120 bar
- completely new post-stripper Alvarez DTL
 - provision of hor flat beams for MTI optimization (optional)
 - optimized DT shape wrt shunt impedance per surface field
 - varying stem orientations for parasitric mode damping
 - increase of transv focusing to avoid space charge driven resonances
- alternative DTL design based on IH-cavities followed by Univ. of Frankfurt
 - shorter DTL
 - allows for upgrade option to about 50 MeV/u
- upgrade finished in 2021

Thank you !

TUA1I02: L. Groening et al., Upgrade of the UNILAC for FAIR

GSÅ—

New DTL Parameters, Rf-Power

design parameters remain, except duty cycle

Ion A/q	\leq 8.5, i.e. ²³⁸ U ²⁸⁺	
Beam Current (Pulse)	15	emA
Input Beam Energy	1.4	MeV/u
Output Beam Energy	11.4	MeV/u
Normalized, total output Emittance, horizontal/vertical	0.8 / 2.5	mm mrad
Beam Pulse Length	≤100	μs
Beam Repetition Rate	≤ 2.7	Hz
Operating Frequency	108.408	MHz

no mixed-mode operation in future !

- existing power sources are 40 years old
- replace all-in-one high power amplifiers by modular system
- replace relais-based control system by PLC
- replace two-staged tube pre-amplifiers by one single solid state device

