

Challenges for the Next Generation ECRIS

L Sun

Institute of Modern Physics, CAS, 730000, Lanzhou, China

- Development of a 3rd G. ECRIS
- What should be done to make a

successful 4th G. ECRIS?

IMP HIRFL U⁴¹⁺ 100 eµA/ CW

MSU FRIB U³⁴⁺ 13 pµA/ CW

Why a Next G. ECRIS?

ECR Ion Source

ogenic Distribution Line

om Temperature REQ Acce

B=0.041 Quarter Wave Resona

B=0.085 Quarter Wave

CW-intense highly charged heavy-ion-beams requested by accelerator complex

RIKEN RIBF U³⁵⁺ 525 eµA/ CW

SPIRAL2 Ar¹²⁺ 1 emA/ CW

Pulsed-intense highly charged heavy-ion-beams requested by accelerator complex

Requirements of ion source for those high energy (GeV/u) high current heavy ion accelerators

 $E \sim Q^2$ for cyclotrons $E \sim Q$ for linac

Higher power Simpler injection mode

Developing intense highly charged ion source is both performance-effective and cost-effective.

	²³⁸ U ³⁴⁺	²³⁸ U ⁴⁶⁺	²³⁸ U ⁵⁵⁺
Injection E (MeV/u)	1.3	1.3	1.3
Output E (MeV/u)	100	100	100
${\rm Design}\ {\rm I}_{\rm max}\ ({\rm em}{\rm A})$	1.0	1.0	1.0
SC cavity	HWR009+HWR015+ Spoke021	HWR009+HWR015+ Spoke021	HWR009+HWR015+ Spoke021
SC cavities	44+100+248= <mark>392</mark>	40+92+176= <mark>308</mark>	32+80+152= <mark>264</mark>
Solenoids	78	65	55
CRM Reduced		11	16
Total length (m)	288	225	197
Budget reduced		>70 M\$ (MP not included)	>100 M\$ (MP not included)

	²³⁸ U ³⁴⁺	238U46+	238U22+
Injection E (MeV/u)	1.3	1.3	1.3
Output E (MeV/u)	100	100	100
${\rm Design}\ {\rm I}_{\rm max}\ ({\rm em}{\rm A})$	1.0	1.0	1.0
SC cavity	HWR009+HWR015+	HWR009+HWR015+	HWR009+HWR015+
It is very muc	ch worthy of deve	loping highly cha	rged ion source
so aiming at ver	y high charge stat	e!!	
Sciencias	/	00	
CRM Reduced		11	16
Total length (m)	288	225	197
Budget reduced		>70 M\$ (MP not included)	>100 M\$ (MP not included)

- EBIS or Electron Beam Ion Source
 - Invented by Dr. Donets in <u>1965</u>
 - Control precisely and independently $n_e^{},\,T_e^{}$ and $\tau_i^{}$
 - Very high charge state pusled ion beams, such as 3.4×10⁹ ppp Au³²⁺ with RHIC-EBIS
- LIS or Laser Ion Source
 - Proposed by Dr. Bykovskii et al. and Peacock, Pease in <u>1969</u>
 - Least control of the three key factors
 - Very intense short pulse medium charge state ion beams, typically $1^2 \times 10^{10}$ ppp Pb²⁷⁺ with CERN/ITEP LIS
- ECRIS or Electron Cyclotron Resonance Ion Source
 - proposed by Prof. Geller in late 1960s
 - Reasonable control of the $n_e^{},\,T_e^{}$ and $\tau_i^{}$ factors but not independently, and they are coupled
 - Most powerful machine for CW HCI beams and capable of delivering 10¹⁰
 ppp or more intense pulsed beam with AG mode

Multicharged Ion production in a minimum-|B|

•
$$I_i^q = \frac{1}{2} \frac{n_i^q q e V_{ex}}{\tau_i^q}$$
 n_i^q ion density for species i charge q $\sum_{i,q} n_i^q n_i^q q_i = n_e$

• RF dispersion equation at resonance :
$$(n_e T_e) \approx (\frac{m_e \mathcal{E}_0 \omega_{rf}^2}{e^2}) m_e c^2 \left[\frac{q}{\omega} \alpha \omega_{ECR}^2 \right]$$

• Plasma Stability condition :
$$\beta = \frac{n_e k_b T_e}{(\frac{B^2}{2\mu_0})} < 1$$

As
$$n_e / B /$$

- $B_{inj} \simeq 3 4 B_{ecr}$ on axis
- $B_{ext} \sim 2.2 \quad B_{ecr}$ on axis (T)
- $B_{rad} \sim 2B_{ecr}$ on plasma chamber wall
- Last closed Bmod inside chamber is ~2 B_{ecr}

Semi-empirical rules

(Plasma neutrality)

				4
All permanent magnet ECRIS	Classical RM ECRIS	Hybrid SC-ECRIS	Fully SC-ECRIS	
Nanogan series ion sources	GTS source	RAMSE, SHIVA	SERSE 18 GHz	
BIE series ion sources	AECR-U	A-PHOENIX	VENUS 28GHz	
LAPECR1, LAPECR2	LECR2, LECR3	PKDELIS	SECRAL 18~28 GHz	
Kei1, Kei2	RIKEN 18 GHz	Dubna 18 GHz	SUSI 18~24 GHz	
SOPHIE	ECR4, Caprice		RIKEN SCECRIS 28 GH	łz
Operated 2.45 ~ 14 GHz	Operated 10 ~ 18 GHz	Operated 14 ~ 28 GHz	Operated 18 ~ 28 GHz	

1980	19	85	1995	20	02	>
SUPERMAFIOS MINIMAFIOS ECREVIS* LBL ECR MSU ECR		CAPRICE (CEA) ECR4 (GANIL) A-ECR (LBL	-) RIKEN 18 GHz PHOENIX (LPS)	C)	VENUS* (LBNL) SECRAL* (IMP/CAS) SUSI* (MSU) RIKEN SCECRIS*	???
ORNL ECR OCTOPUS ISIS			SERSE [*] (LNS/ GTS (CE	(CEA) EA)		
(G1	Cost~500 k€	(G 2	Cost: 1-4 M€ G3	Cost? G4

*Superconducting ECRIS

From T. Thuillier's slides at CERN Accelerator School 2012

TEAL

SERSE@INFN

Available in 1997

Frequency	18 + 14.5 GHz
Type of launching	WR62, off-axis
Mirror length	490 mm
B _{inj}	2.7 T
B _{min}	0.3-0.6 T
B _{ext}	1.6 T
L _{ecr}	< 100 mm
L _{hexapole}	700 mm
B _{rad}	1.55 T max.
Ø plasma electrode	8 mm
Ø puller	12 mm
Extraction voltage	30 kV Max.

What we learn from SERSE:

- 28 GHz operations seem to give more current
- TE₀₁ mode works with ECRIS
- Higher extraction voltage is essential
- Lots of technical problems...
- LHe boil-off
- X-ray radiation problems
- Poor extraction and transport
- Time consuming and expensive
- S. Gammino@FRIB Ion Source Review 2009

L. Sun, HIAT'15, YOKOHAMA 17

Achieved magnetic fields Binj \leq 4 T, Bext \leq 3 T, Brad \leq 2.2 T

Sextupole-in-Solenoid

- cost effective
- reliable
- scaleable to 56 GHz

ECREVIS, SERSE, SUSI, MS-ECRIS, RIKEN SC-ECR

- 1996-1997-Prototype sextupole/solenoid built and tested with directors fund
- 1997-Decision to build production magnet
- 1999-ISOL Task Forces selects 400 kW
 Uranium Driver for US radioactive beam
 project
- 1999-Production magnet trains to full field
- 2001-Installed and successfully tested in cryostat
- 2002-First Plasma--18 GHz Operation
- 2003-Sep--160 eµA Bi²⁴⁺
- 2004-May--First 28 GHz Operation

VENUS Team: D. Leitner, C. Taylor, C. Lyneis, M. Leinter S. Abbott (not shown)

C. Lyneis@Lecture of Brightness Award 2009

- Strong clamping with metal bladders
- <u>Shell construction to exert sufficient pre-stress</u>
- Difference to other designs: **<u>3:1 Copper content in the sextupole wire</u>**, which provides thermal stabilization and might damp micro movements of the coil.
- Might help also in preventing quenches initiated by x-ray heating
- Conservative approach for maximum field values and current densities to keep enough safety margin

D. Leitner@FRIB Ion Source Review 2009

- •A LHe recirculation system reserves the conditions for the continuous operation of the magnet
- •Bremsstrahlung radiation causes strong 4.2 K heat sink
- •High voltage insulation deteriorates in the high x-ray flux
- •X-ray flux is strongly dependent on the heating frequency
 - 1.5 W~1.0 kW@28 GHz

D. Leitner@FRIB Ion Source Review 2009

Major Events of the VENUS Project

09/97	Prototype Magnet Completed
09/01	Final Magnet Test
06/02	First Plasma@18 GHz
05/04	First 28 GHz Plasma
08/06	220 euA U ^{33+, 34+}
01/08	Quench/Lead burnout
07/10	First plasma after repair

Trouble shooting diagram

D. Leitner@ECRIS2010, Grenoble

- Operates 650° C-2300° C to vaporize metals
- Improved cooling
- Expands VENUS' metal production capability

Uranium Development: High Intensity

- Uranium beams will be one of the most important and challenging beams for projects like FRIB, RIBF, HIAF...
- U sublimes @ 2000° C, 1000W!
- FRIB needs 440eµA of ²³⁸U^{33+,34+} combined

²³⁸ U ³³⁺	450eµA
²³⁸ U ³⁴⁺	400eµA
²³⁸ U ⁵⁰⁺	13еµА

10 years from 1st plasma

J. Benitez@ICIS2011, Giardini Naxos

Pros

- Lower/simpler interaction forces;
- Smaller magnet size and cryostat;
- Simpler fabrication and somewhat a bit lower cost.

Con

• Inefficient utilization of the radial field.

Comments:

- Will this new structure work in terms of HCI production?
- Is this still a conventional ECR ion source?
- Engineering feasibility?

Three Solenoids

Cold Mass in ACCEL: (2002-2005)

- No problems with winding and installation
- Difficulty in effective clamping solution

Sextupole

Sextupole + Three Solenoids

- Retraining process is needed after every warm-up
- Both warm-up and cool-down procedures are very time consuming and has many technical details

- Main insulator failure at high X-ray flux radiation
- Insufficient µW power density
 → Dual 18 GHz feeding
- High dynamic 4.2 K heat load at gyrotron frequency (~1W/kW)

- High mass resolution analyzing system is important for high charge state heavy ion beam production
- Large gap dipole magnet is essential to have high transmission efficiency and high order aberration control
- Space charge Effect dominates intense beam extraction that needs optimum design

Milestone of the SECRAL Project

- 09.2000 Project approved.
- 04. 2002 Magnet fabrication contract with ACCEL
- 08. 2005 First Analyzed Beam at 18 GHz
- 2005~2006 Commissioning at 18GHz, many record beam intensities were produced
- 05. 2007 First operation beam to HIRFL accelerator
- 08. 2009 First beam test at 24GHz
- 09. 2011 first uranium beam delivered for HIRFL
- 11. 2011 External LHe recycling system put into operation with SECRAL
- 06. 2014 680 eµA Bi³¹⁺ produced
- 05. 2015- 1420 eµA Ar¹²⁺ produced
- Up to Now \rightarrow more than 20,700 hours for routine operation.

SECRAL beam current increasing with the technologies

SECRAL@2015

Challenges to Develop a 4th G. ECRIS

- Reliable SC-magnet running at optimum fields for 4th G.
- Effective coupling to the plasma of 10-20 kW/40-60GHz microwave power
- Strong ECR plasma bremsstrahlung radiation problems
 - Heat sink in cryostat
 - HV insulator degradation
- Intense high charge state ion beam (20-40emA) extraction and transmission and beam quality control
- Ion beam quality and stability from the ion source working at 10-20 kW/50-60 GHz is unknown
- Intense metallic beam production, especially ion beams of refractory materials

4th G. ECRIS Goal

• >1.0 emA very heavy ion beam, Bi³¹⁺, U³⁴⁺...

	lon	Ar ¹²⁺	Xe ²⁷⁺	Bi ³¹⁺	U ³⁴⁺	
	18 GHz	735	380	270	180	Contributions from:
	24/28 GHz	1460	920	680	400	SECRAL, VENUS and SuSI
	Gain factor	2	2.4	2.5	2.2	
Why n	ot 56 GHz	I ^q α ω ² _E 5 GHz~ Pros: p Cons: • Higl • Lore • Eng	CR, G _q ~(2 G _q =2.6: ^ otential Bea hest Field ~1 entz Force b ineering cos	28/18) ² = 1.0 emA am intensity 15 T (limit of y a factor of st and risk >	2.4 U ³⁴⁺ (2.0 em gain by a fa f Nb ₃ Sn Tech f 1.5 (longer a factor of 1	A with Afterglow) actor of 1.5 a.) sextupole) L.5?

General Parameters of A 45 GHz ECRIS

Specs	Unit	State of the Art ECRIS	45 GHz ECRIS
frequency	GHz	24~28	45
B _{ECR}	Т	1	1.6
B _{rad}	Т	2	>3.2
B _{inj}	Т	3.6~4	>6.4
B _{ext}	Т	2~2.5	>3.4
Chamber ID	mm	100~150	150
Warmbore ID	mm	140~180	170
Mirror Length	mm	400~500	500

Challenges: SC-Magnet

VENUS

SECRAL

	Q	SECRAL 18 GHz <3.2 kW μA	SECRAL 24GHz <i>3-4 kW</i> µA	VENUS 28 GHz 5-9 kW μA
160	6+	2300		2860
	7+	810		850
40Ar	12+	510	650	860
	16+	73	149	270
	17+	8.5	14	36
129Xe	27+	306	455	270
	35+	16	64	28
	42+	1.5	3	0.5
209Bi	31+	150	242	310
	41+	22	50	15
	50+	1.5	4.3	5.3
238 U	31+			460
· · · · · ·	35+			311

L. Sun, HIAT'15, YOKOHAMA 39

As of 2012

Challenges: SC-Magnet

	A Fe	w Exampl	e Beams from S	SECRAL and	VENUS	
		Q	SECRAL 18 GHz <3.2 kW	SECRAL 24GHz <i>3-4 kW</i>	VENUS 28 GHz 5-9 kW	
			μA	μΑ	μΑ	_
	160	6+	2300		2860	
					850	
• ECR ION SOURCE IS	s not pic	куо	n the		860	
magnet structure					270	
• As long as an ont	imum n	este	d min-	R	36	
field configuration					270	
	n is crea	lleu			28	
		42+	1.5	3	0.5	
	209Bi	31+	150	242	310	
		41+	22	50	15	
		50+	1.5	4.3	5.3	
	238 U	31+			460	
SECRAL		35+			311	

As of 2012 L. Sun, *HIAT'15, YOKOHAMA* 40

CECE A

L. Sun, HIAT'15, YOKOHAMA 41

Challenges: SC-Wire

 A 45 GHz ECRIS magnet designed at 12 T@1400 A/mm² to have ≤85% loading factor

M-Grade RRP wire from OST gives more safety

margin

L. Sun, HIAT'15, YOKOHAMA 43

Challenges: SC-Wire

Wire Pros:

- No extra cabling process
- Lower power supply currents (<1000 A)
- Simpler HTS current lead solution
- HV platform feasible
- Cost efficient

Cons:

- Sophisticated quench protection issues
 - ~1.7 MJ stored energy
 - Insulation limit 1000 V, T_{quench} rise ?

OST RRP wire

- Superconducting joints
- Higher failure risk

Cable

Pros:

- Successful examples of Accelerator magnets
- Good reliability
- Easier quench protection sys.

Cons:

- Not feasible for HV platform
 - 100~300 kV
 - 10 kA PSs on Platform
- Cryogenic solution ?
- Higher cost
- Performance degradation after cabling

Rutherford Cable

L. Sun, HIAT'15, YOKOHAMA 44

Characteristics of Nb₃Sn Magnet

- Sophisticated and time consuming heat treatment sequence
- Performance is greatly heat treatment related
- Brittle
- Performance is strain sensitive
 - Mechanical stresses in windings
 - Magnet design
 - Reversible degradation >150 Mpa
 - Permanent degradation >200 MPa

Example heat treatment sequence for ITER wire

Challenges: Microwave Coupling

$$I_i^q = \frac{1}{2} \frac{n_i^q q e V_{ex}}{\tau_i^q}$$

$$n_i^q \sim \omega^2$$
, $V_{ex} \sim volume \ effect$

- 10~18 GHz: ion source performance consistent with scaling laws:
 - $\checkmark \omega^2$ scaling
 - ✓ Extra gain from plasma volume effect & high P_{rf} at 18 GHz
- 24/28 GHz generates better performance than 18 GHz:
 - ✓ Much Higher P_{rf}
 - ✓ Frequency effect for higher Q
- Gyrotron frequency is not working as efficient as Klystron frequency:
 - Empirical scaling laws applicable still?
 - □ µW coupling issue?

- 5.0 kW@24 GHz TE₀₁ to get the extrapolated results from 18 GHz expected at 3.0 kW
- A coupling efficiency of <60% compared to 18 GHz?

Challenges: Microwave Coupling

- Ø20 mmTE₀₁ show obvious advantage in HCI production at high power level
- Power efficiency is further improved with new Waveguide design
- Better understanding towards optimum µW coupling is essential so as to avoid:
 - \rightarrow Weak higher frequency effect
 - → Higher power is needed which means reinforced cooling and more 4.2 K heat load mitigation

Recent progress on µW coupling understanding

Challenges: Intense beam extraction

Child-Langmuir Law:

- $j = \frac{4}{9} \varepsilon_0 (\frac{2q}{m_i})^{0.5} U^{1.5} / d^2$
 - When more ions produced, higher extraction voltage is desired, i.e. >30 kV

$$\varepsilon_{ecr} \propto r_i \cdot B_{ext} \cdot \sqrt{\frac{Q_i}{M_i}}$$

- Applicable for medium charge ions
- Very highly charged ions intrinsically features lower ε
- SPC may have stronger impact

Challenges: Intense Beam Transmission

Increased beam intensity:

- ~20 emA mixing beams and ~1.0 emA analyzed beam
- SPC results in higher beam envelope → bigger gap dipole
- Unwanted beams
 - Better pumping to improve vacuum
 - Watered cooling at beam loss region

Beam quality control:

- Avoid higher order aberration
- Space charge compensation
- SPC effect results in mass resolution degradation of the M/Q analyzing system
- Transverse decoupling solution

Challenges: Bremsstrahlung Radiation and Cryogenics

Challenges: Metallic Beam Production

н		He
Li Be Gas	BCNO	F Ne
Na Mg Liquid 20°C	Al Si P S	CI Ar
K Ca Solid	Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se	Br Kr
Rb Sr	Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te	I Xe
Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy H	to Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po	At Rn
Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf E	Es Fm Md No Lr Rf Db Sg Bh Hs Mt UunUuuUub	
н		He
H Li Be	BCNO	He F Ne
H Gas Na Mg Liquid 700°C	B C N O Al Si P S	He F Ne Cl Ar
H Li Be Gas Na Mg Liquid 700°C K Ca Solid	B C N O Al Si P S Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se	He F Ne Cl Ar Br Kr
H Li Be Na Mg Liquid 700°C K Ca Solid Rb Sr	BCNOAlSiPSScTiVCrMnFeCoNiCuZnYZrNbMoTcRuRhPdAgCdInSnSbTe	He F Ne Cl Ar Br Kr I Xe
H Li Be Gas Na Mg Liquid 700°C K Ca Solid Rb Sr Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy F	B C N O Al Si P S Sc Ti V Cr Mn Fe Co Ni Cu Zn Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Io Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po	He F Ne Cl Ar Br Kr I Xe At Rn

For mA metallic beams, oven is the only solution

- <700°C--LTO
- <1500 °C--RHO
- <2200 °C--HTO

Challenges: Metallic Beam Production

For emA U³⁴⁺ beam production:

- Stronger Lawrence force because of higher B field
 - Forces increased 4th G./3rd G. = 45/28 ~1.6
- Higher temperature to get more vapor
- Will LBNL-HTO survive?
- Alternative solution is desired

For low melting point metals:

- Large capacity oven
 - 400 euA Bi³¹⁺~11 mg/hr→1 emA Bi³¹⁺~27.5 mg/hr→4.6 g/week
- Plasma chamber contamination after beam time

Long term operation stability of the ovens

Destroyed oven by Lawrence Forces

3rd G. ECRISs are still moving towards their peak performance, and dispensable for the corresponding facilities;

What a 4th G. ECRIS look like?

She is a "GIRL"

L. Sun, HIAT'15, YOKOHAMA 54

Ion Source Group: J. W. Guo, W. Lu, W. H. Zhang, Y. C. Feng, C. Qian, Y. Yang, X. Fang, H. Y. Ma, X. Z. Zhang, H. W. Zhao

Magnet Group: W. Wu, L. Zhu, T. J. Yang, L. Z. Ma

Accelerator Physics Group: Y. J. Yuan

Thanks for your attention 谢谢!

HPPA Mini-workshop 2015

October 13-15, 2015, IMP, Lanzhou, China

Topics:

- Status reports and new developments of high power proton and heavy ion linac accelerators.
- ♦Beam dynamics
- ♦RFQ accelerator
- SRF and superconducting linac, and related topics such as cavity processing, rf coupler, frequency tuning and so on
- ♦LLRF, control system and machine protection
- ♦Beam diagnostics
- ♦Proton and heavy ion sources
- ♦RF power source for proton and heavy ion linac
- ♦Some other topics related to proton and heavy ion linac