GANIL OPERATION STATUS AND NEW RANGE OF POST-ACCELERATED EXOTIC BEAMS

O. Kamalou¹), J. Angot²). O. Bajeat¹), F. Chautard¹), P. Delahaye¹), M. Dubois¹), T. Lamy²), L. Maunoury¹), G. Normand¹), A. Savalle¹)

GANIL, Grand Accélérateur National d'Ions Lourds, Caen, France
LPSC - Université Grenoble Alpes - CNRS/IN2P3, Grenoble, France

HIAT2015 September 07-11, 2015 YOKOHAMA, JAPAN

HIAT20155

OUTLINE

- Running statistic
- > Operating modes at GANIL
 - Beam Intensity
 - Spiral 1 (ECR source,...)
- > SPIRAL 1 UPGRADE
 - Production Method
 - 1+FEBIAD source
 - Charge breeder and experimental results
 - Schedule and organization.

Running statistic From 2001 to 2015

Operating Mode at GANIL

Operating Mode at GANIL

Intense Primary beams

	Beam	lmax [μAe]	[pps] <2 10 ¹³	Emax [MeV/A]	Pmax [W] <6kW	Used with Spiral
	¹² C ⁶⁺	18	1.9 10 ¹³	95	3 200	
	¹³ C ⁶⁺	18	2. 10 ¹³	80	3 000	X
2.10 ¹³ pps Safety	¹⁴ N ⁷⁺	15	1.4 10 ¹³	95	3 000	
limitation reached	¹⁶ O ⁸⁺	16	10 ¹³	95	3 000	X
	¹⁸ O ⁸⁺	17	10 ¹³	76	3 000	X
	²⁰ Ne ¹⁰⁺	17	10 ¹³	95	3 000	X
	²² Ne ¹⁰⁺	17	10 ¹³	79	3 000	
	²⁶ Mg ¹²⁺	20	10 ¹³	82	3 600	X
	³⁶ S ¹⁶⁺	11	5 10 ¹²	77.5	1100	X
	³⁶ Ar ¹⁸⁺	16	5.5 10 ¹²	95	3 000	X
Possible	⁴⁰ Ar ¹⁸⁺	17	6. 10 ¹²	77	3 000	
improvement	⁴⁸ Ca ¹⁹⁺	4-5	1.3 10 ¹²	60	600-700	X
	⁵⁸ Ni ²⁶⁺	5	1.2 10 ¹²	77	860	
	⁷⁶ Ge ³⁰⁺	5	1.2 10 ¹²	60	760	
	⁷⁸⁻⁸⁶ Kr ³⁴⁺	7.5	1.4 10 ¹²	70	1200	X
	¹²⁴ Xe ⁴⁶⁺	2	2.7 10 ¹¹	53	300	

6

Stable isotope beam tunning

	beam	Abondance isotopique [%]	Beam reference	•F/F	Energie [MeV/A]	Expected beam intensity at the exit of CSS1 [pps]	Measured beam intensityat the exit of CSS1 [pps]
	⁴⁰ Ca ⁷⁺	96,941	-	1	4,5	9.10 ¹¹	9.10 ¹¹
	⁴² Ca ⁸⁺	0,647	⁴⁴ Ca ⁸⁺	4.75%	5,32	4.10 ⁹	7.10 ⁸
>	⁴⁴ Ca ⁸⁺	2,085	⁴⁰ Ca ⁷⁺	+3.9%	4,85	1,4.10 ¹⁰	1.10 ¹⁰
	⁴⁶ Ca ⁸⁺	0,004	⁴⁰ Ca ⁷⁺	-0.6 %	4,44	2.10 ⁷	5.10 ⁶
L,	⁴⁸ Ca ⁹⁺ ¹⁶ O ³⁺	⁴⁸ Ca ⁹⁺ : 0,187	⁴⁴ Ca ⁸⁺	3.12 %	5,16	9.10 ⁸	<10 ⁸

Frequency shift of Co1 and CSS1 with BR constant

Current Target Ions Source ECR N+: Nanogan3+C

Highest ionisation efficiencies for gases!

A. C. Villari et al., Nuclear Physics A 787 (2007) 126c-133c

To the cost of universality

Current Target Ions Source ECR N+: Nanogan3+C

Highest ionisation efficiencies for gases!

To the cost of universality

Current Target Ions Source ECR N+: Nanogan3+C

Highest ionisation efficiencies for gases!

To the cost of universality

Exotic beams production

ions	W [MeV/u]	[pps]	ion	W [MeV/u]	[pps]
6He	3.8	2.8 10 ⁷	20F	3	1.5 10 ⁴
6He	2.5	3.7 10 ⁷	17Ne	4	4.104
6He	5	3.10 ⁷	24Ne	4.7	2.10 ⁵
6He	LIRAT (<34 keV/u)	2.10 ⁸	24Ne	7.9	1.4 10 ⁵
6He	20	5.10 ⁶	24Ne	10	2 10 ⁵
8He	3.5	1.10 ⁵	26Ne	10	3.10 ³
8He	15.5	1.104	31Ar	1.45	1.5
8He	15.4	2.5 10 ⁴	33Ar	6.5	3.10 ³
8He	3.5	6.10 ⁵	35Ar	0.43	4.10 ⁷
8He	3.9	8.104	44Ar	10.8	2.10 ⁵
140	18	4.104	44Ar	3.8	3.10 ⁵
150	1.2	1.7 10 ⁷	46Ar	10.3	2.104
190	3	2.10 ⁵	74Kr	4.6	1.5 10 ⁴
200	3	4.104	74Kr	2.6	1.5.10 ⁴
200	4	4.104	75Kr	5.5	2.10 ⁵
18Ne	7	1.10 ⁶	76Kr	4.4	4.10 ⁶
18F	2.4	2 10 ⁴			

SPIRAL 1 achievements: highlights

7 elements

VIII

VII

V

VI

IV

Si

Ge

Sn

Sb

Existence of unbound ⁷He using the active target MAYA [1].

Table of elements

Probing the neutron distributions in borromean nuclei from charge radii measurement using a laser trap [3] and transfer reactions [4].

Study of quantum tunneling at the femtometer scale – probing the interplay between intrinsic structure and the reaction dynamics of the colliding nuclei around the Coulomb barrier using beams of ^{6,8}He [5].

Resonant elastic scattering for probing the role of unbound nuclei in explosive combustion of hydrogen - see for instance [6].

Evolution of N=20 and 28 shell closures far from stability and the emergence of new shell gap at N=16, using neutron rich beams of Ne [7] and Ar[8].

- [1]: M. Caamaño et al, Phys. Rev. Lett. 99 (2007) 062502.
- [2]: X. Flechard et al., Phys. Rev. Lett. 101 (2008) 212504.
- [3]: P. Mueller et al., Phys. Rev. Lett. 99(2007)252501.
- [4]: A. Chatterjee et al., Phys. Rev. Lett. 101(2008)032701.
- [5]: A. Lemasson et al., Phys. Rev.Lett. 103 (2009) 232701.
- [6]: W.N. Catford et al., Phys. Rev. Lett. 104(2010)192501.
- [7]: L. Gaudefroy et al., Phys. Rev. Lett. 97(2006) 092501 and Phys. Rev. Lett. 99, 099202 (2007).
- [8]: f. De Oliveira Santos et al., Eur. Phys. Jour. A 24 (2005) 237-247.

2001 – 2008: 70 physics articles 12 PhD Thesis 53 technical articles 7 PhD thesis

SPIRAL 1 upgrade

One of the main recommendations of scientific advisor comity for existing facility is to extend the radioactive ion beam variety available from the SPIRAL1 facility.

-> Condensable beams

- -> Gaseous beams
- -> Accelerated beams
- -> Low Energy beams

-Increase the production rate

- Post-accelerate the RIB's by CIME cyclotron up to 20MeV/A
- Achieve a high purity of the beam ($\Delta m/m \approx 10^{-4}$)

SPIRAL 1 upgrade : Method

- -Developing and operating new targets : shapes and materials
- -Developing and operating new Ion sources (improve N+ one + New 1+ Ion Source)
- -Operating a high performance charge breeder
- -Mass separating and accelerating the RIB with CIME cyclotron (K 265)
- -Low energy beam with desir+HRS

SPIRAL 1 upgrade : Production

- 1 Fragmentation projectile : Up to 6kW → 95MeV/A on graphite target (current method)
- 2 Fragmentation target : 3kW ¹²C Primary Beam on to the target with A \leq Nb
- 3 Fusion Evaporation : CSS1 \rightarrow Thin window

SPIRAL 1 upgrade : Production

- 1 Fragmentation projectile : Up to 6kW → 95MeV/A on graphite target (current method)
- 2 Fragmentation target : 3kW ¹²C Primary Beam on to the target with A \leq Nb
- 3 Fusion Evaporation : CSS1 → Thin window

Ion sources

- ECR 1+ or N+
- FEBIAD

HIAT2015

- Surface ionization

1+ FEBIAD source (type VADIS ISOLDE)

FEBIAD results with primary beam at nominal power

Metallic and non metallic beams

Isotope	Power (W)	Rate (pps)
21Na	984	3.00E+07
25Na	964	2.20E+07
23Mg	1299	1.33E+07
25Al	964	2.30E+04
28AI	981	1.55E+06
29Al	1301	1.40E+07
30AI	1287	4.40E+04
29P	1226	9.70E+03
30P	1287	4.20E+05
31Cl	1337	3.27E+03
32Cl	1024	6.50E+04
33Cl	1235	9.50E+06
37K	821	3.30E+07
38K	1214	6.40E+07
39Cl	1013	1.14E+04

³⁶Ar@95AMeV, 1.5 kW

Noble gases

ŝ	Isotope	Power (W)	Rate (pps)
	23Ne	1299	2.20E+06
	32Ar	891	5.50E+03
	33Ar	1235	1.80E+05

Molecules

	Power	
Isotope	(W)	Rate (pps)
C17F	1226	4.60E+03
Be ²⁰ F	1385	2.50E+06
Be21F	1287	1.90E+05
Be33Cl	941	2.40E+05
H38mCl	1013	5.90E+02
H38Cl	1013	3.50E+03

Mostly >10⁵ pps!

Results exhibiting with an efficiency less than expected by a factor of 4 : **Tests of New Version is in progress on SPIRAL 1 Tests Bench**

<u>CIME : Post-accelerator requirements</u>

Charge state distributions of alkali elements

Mesurements done at LPSC

Heavier is the element wider is the distribution
Lighter is the buffer gas, higher is the maximum charge breeding efficiency of the ³⁹K and narrower is the CSD

L. Maunoury et al., submitted to Rev. sci. Instr

HIAT2015

Schedule and organization

SCHEDULE UPGRADE SPIRAL 1

In 2017 : New RIBs availabe at GANIL, especially for the AGATA campaign.

Thank you for your attention