

Production 72 MHz Beta=0.077 Superconducting Quarter-wave Cavities for ATLAS

2012 Heavy-Ion Accelerator Technology Conference

Speaker: Mike Kelly Physics Division

June 20, 2012

Outline and SRF Group

Outline

- I. Overview of recent ATLAS SC cryomodules
- II. Key developments for ATLAS and other ion linacs

Team working for SC ion linacs at ANL

Scott Gerbick Zachary Conway Peter Ostroumov Tom Reid Ryan Murphy Brahim Mustapha Mark Kedzie Jim Morgan

I. Present Low- β Technology for ATLAS

- 2009 Cryomodule; seven β=0.15 quarter-wave cavities added to the ATLAS heavy ion linac
- Separate cavity vacuum space
- Maximum voltages of 3.75 MV per cavity have been achieved (E_{PEAK} = 48 MV/m, B_{PEAK} = 88 mT)
- Real gradient for operational cavities of 14.5 MV in 4.6 m module length; highest for any SC linac in this range of beta

Accelerating Voltage

I. 2012 ATLAS Intensity Upgrade Cryomodule

- Seven β=0.077 quarter-wave cavities, four 9-Tesla SC solenoids
- 17.5 MV in 5 meter module length
- 1st ANL module with 4 kW cw high-power rf coupler
 (already tested at full power)

June 8, 2012

I. 2012 ATLAS Intensity Upgrade Cryomodule "桃木" Complete sealed string assembly Vacuum vessel + magnetic + thermal shielding

I. Real Estate Gradient for Today's State-of-the-Art (β ~0.6-.15)

Part II. Key Technical Developments for ATLAS Low-β SC Cavities

II. Electromagnetic Design for a Quarter-wave Cavity

Surface Fields

		Parameter	Value	Units
		Frequency	72.750	MHz
		Peak Beta	0.077	
		QRs	26.4	Ohm
		R/Q	576	Ohm
		βλ	31.75	cm
		Design Voltage	2.5	MV
		$\Delta f / \Delta E_{acc}^2$	-1.9	Hz/(MV/m) ²
		$\Delta \mathbf{f} / \Delta \mathbf{P}$	-2.6	Hz/Torr
		Tuning Sensitivity	~8	kHz/mm
		At Eacc= 1 MV/m		
		Stored Energy	0.375	Joule
	Die formed center conductors	E _{peak}	5.16	MV/m
		B _{peak}	7.62	mT
30 cm	_	·		

Electromagnetic Design

- Low surface fields consistent with fabrication/processing/cleaning
- Steering corrected drift-tube face to eliminate beam steering
- Tapered outer housing reduces B_{PEAK} by ~20% compared to cylindrical outer housing

4

II. Mechanical Design for a Quarter-wave Cavity

Niobium reinforcing ribs and a titanium plate to stiffen center conductor

Stiffening in E-field region, in part, to reduce $\Delta f/\Delta p$

ATLAS operates at 4 Kelvin:

- Very small helium pressure sensitivity by design $\Delta f/\Delta p = -2.6$ Hz/Torr
- Enabled through modern FEA simulations (ANSYS)

II. Mechanical Design: Cavity Frequency Versus Displacement of the Center Conductor

II. Mechanical Design: Near Elimination of Microphonics in 72 MHz Quarter-wave Cavity

Electrical centering of center conductor plus small \(\Delta f/\Delta p\) nearly eliminates microphonic detuning

II. Parts design for ANL Low-Beta SC Cavity

- Complete Assembly
- Niobium is hydroformed or deep drawn all with blended transitions
- Stainless steel helium vessel assembled around the e-beam welded niobium cavity
- Ports at ends of cavity specifically for electropolishing

II. Cavity Fabrication by Wire EDM

Wire EDM at Adron

II. Cavity Fabrication by Wire EDM

- Essentially no possibility for inclusions
- No expert or special EDM techniques needed (traditional niobium machining requires a machinist highly skilled in niobium machining)
- Nothing to support the notion that "Wire EDM is a filthy process"
- Recast layer 5 microns thick
 - Oxide of brass and niobium
 - Completely removed with a 5 minute buffered chemical polish (not so with EP)

Other Features of Wire EDM:

- 25 micron tolerances
- Can slice (like bread machine) or drop down from above with "sinker EDM"
- Example: Cuts a 30 cm diameter 3 mm thick niobium cylinder in 3 hours

II. Final Weld on Helium Vessel (ASME stamped)

II. Key Technical Development for a Low-Beta SC Cavity

A new electropolishing system for complete low- β SC cavities

II. ANL Recipe for Quarter- (Half-)wave Cavity Cavities

- Welding
 - BCP weld preparation 5-8 minutes, T<18°C
 - Exterior BCP 5 minutes on all niobium surfaces, T<18°C
 - Pre-weld manual HPR on weld surfaces, class 1000 bag; un-bag in chamber
- Ultrasonic cleaning
 - 1 hour in DI water with 60°C Liquinox
- Electropolishing
 - 150 microns in two 6-hour procedures
- High-pressure water rinsing
 - ~4 hours total @ 11 lpm using 0.04 micron filtered DI water (1 hour per coupling port)
- Drying and Clean Assembly
 - 24 hours drying @ class 100
 - Assembly in class 100 area
- In-situ 120°C bake (no benefit observed yet at ANL)
- Bake at 600°C for 10 hours for hydrogen degassing

 \mathbf{X}

Summary

- Major improvements in SRF technology for ion linacs in the last decade
 - Sophisticated designs
 - Clean room techniques; high-quality EP
 - Improved cavity performance
- New directions for SC ion linacs
 - Upgrades and new machines for basic science
 - Very high intensity CW light ion drivers for medicine and accelerator driven systems
- The ANL approach
 - Low frequency optimized cavities
 - Large voltage gain per cavity, low rf losses
 - High real estate gradient
- High-performance SC cavities well positioned for many new high-current CW ion linacs