# New developments in low-Z gas stripper system at RIKEN Radioactive Isotope Beam Factory (RIBF)

Hiroki Okuno, Nobuhisa Fukunishi, Hiroo Hasebe, Hiroshi Imao, Osamu Kamigaito, Masayuki Kase, Hironori Kuboki (RIKEN Nishina Center, Wako)

#### Preview

#### Introduction to RIBF and charge strippers for U acceleration in the world



#### Problems with the charge strippers at RIBF



#### R&D results on low-Z gas stripper



Commissioning status of an actual machine for He gas stripping



#### Introduction to RIKEN RI Beam Factory (RIBF)



# History of RIBF

- 1997- : Project started.
- 2006 28<sup>th</sup> Dec : The first beam from SRC.
- 2007-2012 : Improvement, improvement...
- 2011 Oct.- : New injection system for intensity upgrade of U beam



Achieved Beam Intensities (Goal 1 p $\mu$ A = 6 x 10<sup>12</sup> #/s)



Problems w.r.t. charge strippers will be more severe!!

### Function of charge stripper



# General requirements on charge strippers

#### • High charge state

- Reduction total accelerating voltage and cost
- Density effect in solid/liquid => ~20% higher charge states compared to gas

#### High stripping efficiency

- Typical stripping efficiency = 10%-30%
- Using too many strippers decreases beam intensity to zero.

#### • Long lifetime

- Lifetime of carbon foil is inversely proportional to beam intensity.
- Lifetime-related problems are critical to high-power beam operation.

#### Good stability

- Contributes to stable operation of the acceleration complex.

#### Uniform thickness

- Energy spread after the stripper, emittance growth in the longitudinal direction

#### Uranium accelerators: FAIR@GSI, FRIB@MSU, RIBF@RIKEN

# FAIR@GSI



|                                    | FAIR                                       |  |  |
|------------------------------------|--------------------------------------------|--|--|
| Final energy of U<br>(MeV/nucleon) | 1000                                       |  |  |
| Type of accelerator                | Synchrotron                                |  |  |
| Number of strippers                | 1                                          |  |  |
| Stripping energy<br>(MeV/nucleon)  | 1.4                                        |  |  |
| Charge state                       | 4+ → 28+                                   |  |  |
| Stripping efficiency               | ~14%                                       |  |  |
| Beam power at<br>stripper (kW)     | 300 (pulsed)                               |  |  |
| Type of stripper                   | N <sub>2</sub> gas<br>(supersonic gas jet) |  |  |
| Technical challenge                | Dynamic Vacuum                             |  |  |

# Dynamic Vacuum



# FRIB@MSU



|                                    | FRIB                                                                        |  |
|------------------------------------|-----------------------------------------------------------------------------|--|
| Final energy of U<br>(MeV/nucleon) | 200                                                                         |  |
| Type of accelerator                | SRF linac                                                                   |  |
| Number of strippers                | 1                                                                           |  |
| Stripping energy<br>(MeV/nucleon)  | 16.3                                                                        |  |
| Charge state                       | 33+, 34+ => 76+,77+,<br>78+,79+,80+                                         |  |
| Stripping efficiency               | ~80%                                                                        |  |
| Beam power at<br>stripper (kW)     | 40                                                                          |  |
| Type of stripper                   | Liquid Li film<br>(baseline)<br>He gas with Plasma<br>Windows (alternative) |  |
| Technical challenge                | Liquid Li film<br>Plasma Window                                             |  |

#### Liquid lithium stripper J. Nolen, C. Reed and Y. Momozaki (ANL)



Development of a liquid lithium thin film for use as a heavy ion beam stripper JInst. **4** (2009) P04005

Y. Momozaki<sup>a,1</sup> J. Nolen,<sup>b</sup> C. Reed,<sup>a</sup> V. Novick<sup>a</sup> and J. Specht<sup>b</sup>



Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

F. Marti, May 7 2012, RISP Workshop, Slide 20

#### Plasma Window Contained Gas Stripper Hershcovitch, Thieberger et al (BNL)





Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

F. Marti, May 7 2012, RISP Workshop, Slide 28

# RIBF@RIKEN



|                                    | RIBF                                                                                         |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Final energy of U<br>(MeV/nucleon) | 345                                                                                          |  |  |
| Type of accelerator                | Cyclotron                                                                                    |  |  |
| Number of strippers                | 2                                                                                            |  |  |
| Stripping energy<br>(MeV/nucleon)  | 11 and 51                                                                                    |  |  |
| Charge state                       | 35+→71+/65+→86+                                                                              |  |  |
| Stripping efficiency               | ~5% Invention!                                                                               |  |  |
| Beam power at<br>stripper (kW)     | 7.5                                                                                          |  |  |
| Type of stripper                   | 1 <sup>st</sup> stripper<br>C-foil => He gas<br>2 <sup>nd</sup> stripper<br>C-foil => Wheel? |  |  |
| Technical challenge                | He gas confinement                                                                           |  |  |

#### **Uranium Acceleration at RIBF**



We should think about the first stripper more seriously.









Momentum spread after the stripper



# Requirements on the first stripper

| Item         | Value                 | Effect on the cyclotron-<br>based complex (RIBF)   | Fixed C-foil   |
|--------------|-----------------------|----------------------------------------------------|----------------|
| Charge state | >69                   | Output energy: constant<br>Sector field: increased | 71+            |
| Lifetime     | > 1 week<br>(100 eμA) | Replacement of foil requires careful tuning        | 12 h (1.4 eµA) |
| Uniformity   | <10%                  | Extraction efficiency                              | ~10%           |

#### R&D programs for the first stripper (2008-)

- 1: Large carbon foil on a rotating cylinder
- 2: N<sub>2</sub> gas stripper

#### Large C-foil on a rotating cylinder



Lifetime 60 times longer than that of the fixed foil.

#### The first test for the rotating stripper (May 2008)

A rotating foil was tested in May 2008 => Broke shortly, 15 min Rotation speed ~ 100 rpm



# Very slowly rotating CNT-based foils can survive for 3 - 4 days (10 eµA).



Video of the irradiation on the rotating foil though it is very difficult to recognize its rotation. Some foil sections were missing after 3-4 days when the foil should be replaced.

This stripping system was successfully used in a U beam campaign last year, when the new injector system (RILAC2) started operation as an actual injector.

#### R&D programs for N<sub>2</sub> gas stripper

Gas stripper (N<sub>2</sub>):

 Free from lifetime-related problems.
 Lower equilibrium charge state Qe. (absence of density effect)
 Measurement of Qe using a gas target with differential pumping system.





Mechanical Booster pumps

# A set of test results about gas stripper (Feb./ March 2009)

• U beam: The average charge state with the gas stripper is far below the acceptable charge state for the fRC, 69+.



# Summary of the R&D studies

| ltem            | Value                 | Fixed C- foil     | Large C-foil on a rotating cylinder | N <sub>2</sub> gas   | Low-Z gas            |
|-----------------|-----------------------|-------------------|-------------------------------------|----------------------|----------------------|
| Charge<br>state | >69                   | 71+               | 71+                                 | 56+                  | Higher?              |
| Lifetime        | > 1 week<br>(100 eµA) | 12 h<br>(1.4 eμA) | 4-5 days (10 eµA)                   | Sufficiently<br>long | Sufficiently<br>long |
| Uniformity      | <10%                  | ~10%              | >10%                                | ~0%                  | ~0%                  |

# Example of charge state of U in He (22 MeV/u)

#### Effective charge



Enhancement of the effective charge in the low-Z gas region ← suppression of electron capture process

Stripping energy at RIBF: 11 MeV/u Can we expect higher charge states in the low-Z gas for our gas stripping?

#### A simple estimation of cross sections for 1e-loss and 1e-capture 1E-14 1E-15 Ν 1E-16 Cross section (cm2) 1E-17 He 73+ 1E-18 1E-19 1E-20 1E-21 н 1E-22 1E-23 52+ 66+ 1E-24 -H (Cap.) H (Los) — N (Cap) 1E-25 1E-26 -N (Los) — He (Cap) He (Los) 1E-27 1E-28 20 40 60 80 0 100 q (projectile)

Loss: M. Gryzinski, Phys. Rev. 138 (1965) A305. (Binary Encounter Model) Capture: A.S. Schlachter, et. al., Phys. Rev. A 27 (1983) 3372.

#### **Experimental Method**

fRC

Bending Mag.

• The beams passed through a carbon foil located in front of a bending magnet, which was used to select the individual projectile charge states.

•Several carbon foils were prepared to select projectile charge states from 60 to 75.

• Each beam was directed through a windowless He gas cell of 15  $\mu$ g/cm<sup>2</sup> in thickness to exchange charge again.

•After emerging from the gas cell, the beams passed through a second bending magnet into a FC to analyze the electron captured and stripped ions.

62

lower than equilibrium

61

63



67

66

equilibrium

65

70

higher than equilibrium

71

69

#### **Measured Results**

Electron capture and loss cross sections of U in He-gas were measured to estimate the equilibrium charge state.



# Difficulty in accumulation of low-Z gas

The existing gas stripper: He  ${\sim}15~\mu\text{g/cm}^2$  (0.7 kPa )

(cf.  $N_2 1.3 \text{ mg/cm}^2$ )

About 1 mg/cm<sup>2</sup> of low-Z gas is necessary to be accumulated to obtain higher charge states.

 $\rightarrow$  A new device to make it possible ...

Two options

1. Plasma Windows

=> special techniques to design and operate them.

=> We began the R&D works on the PW with A. Herschcovith.

2. big Mechanical Booster Pumps (MBP)

=> They are big but commercially available.

=> We initiated He gas accumulation of about 1 mg/cm<sup>2</sup> to measure charge distribution and energy spread using them.

# Two He gas targets with differential pumping system

#### 1:8-m He gas target



#### 2: 0.5-m He gas target



# Results (U(11 MeV/u) +He) (Sept. 2010, June, 2011)



#### **Energy Spread**

 $\Delta$ E/E (4 $\sigma$ ) ~ 0.4% (preliminary)

Charge-exchange straggling: H. Weick et al., Phys. Rev. Lett. 85 (2000) 2725.

(cf. ~0.7% (preliminary) in C-foil (300 µg/cm<sup>2</sup>)) We decided to make an actual machine for the He gas stripping.

But there are some issues to be solved.

- 1. Impurity
- 2. Thermal issue
- 3. He gas recycling system

#### Actual machine development



# Tests using U beams are in progress for the next U campaign scheduled in the next autumn.



Beam intensity: 13 eμA

Achieved beam intensity after He gas stripper U65+: 36 pnA, U64+: 44 pnA (cf U71+:~30 pnA, Oct. 2011)

#### *Checklists:* No problems could be found thus far !!

- Impurity: oil, water, N<sub>2</sub>, or O<sub>2</sub> (Increase capture cross section)
  => Low level (No change in the charge state distribution)
- High power beam easily makes a "hole" in gas due to heat generation?
  => No sign in the charge distribution and energy spread thus far
- He gas recycling system

=>98%: recycled + 2%: to recovery line in the laboratory. No loss of He gas

# Summary

- The RIBF has been successfully operated from 2007 to 2012 after the first beam.
- The new injector system began operation in October 2011 to increase the U ion beam intensity.
- The stripper problem is still unresolved.
- However, the low-Z gas stripper is an important candidate.
- In the process of testing the low-Z gas stripper,
  - The electron capture and loss cross section were measured.
  - The charge evolution and energy spread were measured using a thick He gas target with the big MBP system.
- We decided to make an actual machine for the He gas stripping.
- We are testing the machine for the next U campaign in the coming autumn.
- We should do battle with the second stripper in the near future.