Commissioning Experience with CARIBU

- CARIBU overview
- Results with the CARIBU program
- Future prospects

The pursuit of radioactive ion beams

- Science is driving the development of ever more capable radioactive beam facilities
 - Present day facilities are in the $10^4 \rightarrow 10^8$ pps range
 - Future facilities will deliver beam intensities of $10^{10} \rightarrow 10^{13}$ pps
 - Large projects, very expensive, long timeline

FRIB at MSU

CARIBU at Argonne National Laboratory

CARIBU expected beam yields

- 1 Ci ²⁵²Cf fission source provides radioactive species
 - $T_{1/2}$ =2.6 a 3.1% fission branch
 - Maximum approved source strength of 1.0 Ci, installation planned late summer 2012
- ²⁵²Cf fission yield is complimentary to uranium fission
- Stopped beams Masses, decay spectroscopy, laser spectroscopy
- Post-acceleration energy up to 15 MeV/u Single particle structure, gamma-ray spectroscopy

CARIBU - Californium Rare Ion Breeder Upgrade

CARIBU gas catcher

- Large volume 50 cm diameter and 1.5 m length
- UHV construction stainless steel and ceramic
- Ultra pure helium operating pressure of 150 mbar ۲
- Radioactive ions transported by RF + DC + gas flow
- Extraction in 2 RFQ sections with μ RFQs

- Mean extraction time is <10 msec
- Overall efficiency of 20%
- Extraction is element independent
- Emittance: $3 \pi \cdot \text{mm} \cdot \text{mrad}$
- Energy spread: ~1 eV

Purification of radioactive beam

- Contamination from neighboring masses is handled with 'compact' isobar separator
- Resolution required to remove....
 - Neighboring masses R = 250
 - Molecular ions R = 500 1000
 - Isobars R = 5000 50,000
 - Have achieved 1:10,000 resolution with 1:7,000 more typical
- Take advantage of low emittance and energy spread of extracted beams
- Matching sections at entrance and exit form ribbon beam
- All optics except for bending magnets are electrostatic so that tune is mass independent
- And it all fits on a high voltage platform

Beam identification

Zooming in on specific activity

CARIBU in-room low-energy beamline

The Canadian Penning Trap (CPT) at CARIBU

ion potential from $50 \text{ kV} \rightarrow 2 \text{ kV}$

- Trap was previously in AREA 2 utilizing in flight beams and a smaller fission source
- Trap was moved to CARIBU room in 2010

Penning Trap

Linear RFQ trap

CPT measurement campaigns

Charge breeding with an ECR source

ECR charge breeder

- Multiple frequency operation
 - Klystron: 10.44 GHz, 2 kW
 - TWTA: 11→13 GHz, 0.5 kW
- Open hexapole structure
 - RF is injected radially
 - Uniform iron in the injection region for symmetrical fields
 - Improved pumping to the plasma chamber region
 - Base pressure: 2x10⁻⁸ mbar
 - Operation: 7x10⁻⁸ mbar
 - Extraction pressure: 4x10⁻⁸ mbar
- Movable grounded tube
 - 2.5 cm of travel
- 50 kV high voltage isolation

	Design value	Running condition
B _{inj}	1.31 T	1.16 T
B _{min}	0.31	0.27
\mathbf{B}_{ext}	0.85	0.83
B _(radial)		0.86 T
Last closed surface		0.61 T

Worldwide charge breeding results

Beam contaminants

0 f

ADC

C h a n n

- The ECRCB has a large amount of background which has to be filtered out
 - Magnetic analysis has resolution of 1:500
 - Remaining contaminants are seen on energy spectrum

- Peak of interest is a mix of stable cerium and radioactive cesium and barium
 - For other settings have seen
 Fe, Ni, As, Ge
- This contamination hinders beam tuning, limits the detection capability, and complicates the experimental set up

Beam contaminants

• But there are many q/m combinations which can yield a relatively clean spectrum

- A = 143, Q = 25+
 - Total rate: 66,000 Hz
- A = 143, Q = 27+
 - Total rate: 330,000 Hz

- A = 144, Q = 25+
 - Total rate: 900 Hz
- A = 144, Q = 26+
 - Total rate: 10,000 Hz

Beam commissioning

- Commissioning goal was a beam of ¹⁴³Ba¹⁸⁺ accelerated to 6.0 MeV/u
- Achieved commissioning with a beam of ¹⁴³Ba²⁷⁺ at 6.1 MeV/u
 - Verified with gamma ray spectrum
- High energy rate was 900 Hz
 - Breeding efficiency of 12%
 - Total transmission from source was 12%
- What were the bottlenecks?
 - Gas catcher operation
 - Vacuum interlock
 - Bake-out cycle
 - Isobar stability
 - Power supply feedback does not stay in lock
 - Machine transmission
 - Better diagnostics

Next activities for CARIBU

- Install 500 mCi source
 - Immediate factor of 10 increase in available beam rates
 - Greater radiological headaches but have learned with 50 mCi source
- Improve isobar separator resolution without loss of transmission
 - Solve magnet stability issue and learning curve
- Better understanding of the difference between stable and radioactive beam tunes with regard to the charge breeder
- Improve the beam purity from the ECRCB
 - Quartz liner has been installed
 - Changed over to high purity aluminum components
 - Remove the grounded tube
 - Aluminum coat the iron plug
- Build an EBIS to replace the ECRCB

CARIBU EBIS upgrade

- Provides two important gains versus ECR charge breeding at CARIBU
 - Higher charge breeding efficiency demonstrated for pulse injection operation (ANL tests at BNL EBIS)
 - EBIS can accept 10¹⁰ pps
 - Stable beam background suppression
- Optimized all parameters of EBIS source in order to achieve optimal charge breeding
 - Pulsed injection and extraction following RFQ buncher
 - Operation with 2 e-guns
 - Standard operation
 - Electronic closed shell
- Sergey Kondrashev Wednesday