

Design and Status of the Super Separator Spectrometer for the GANIL SPIRAL2 Project

Jerry Nolen, Shashikant L. Manikonda (ANL, Argonne), Martial Authier, Antoine Drouart, Jacques Payet (CEA/DSM/IRFU,), Olivier Delferriere (CEA/IRFU, Gif-sur-Yvette), Franck Lutton, Hervé Savajols, Mehdi Souli, Marc-Hervé Stodel (GANIL, Caen), Bernard Launé (IPN, Orsay)

> HIAT 2012 Chicago June 18, 2012

This work is partially supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

Abstract: S³ Design and Status

The Super Separator Spectrometer (S³) is a device designed for experiments with the very high intensity stable heavy ion beams of the superconducting linear accelerator of the SPIRAL2 Project at GANIL. S³ is designed to combine high acceptance, a high degree of primary beam rejection, and high mass resolving power to enable new opportunities in several physics domains, e.g. super-heavy and very-heavy nuclei, spectroscopy at and beyond the drip-line, isomers and ground state properties, multi-nucleon transfer and deep-inelastic reactions. The spectrometer comprises 8 large aperture multipole triplets (7 superconducting and 1 open-sided room temperature), 3 magnetic dipoles, and 1 electrostatic dipole arranged as a momentum achromat followed by a mass separator. A summary of the beam-optical simulations and the status of the main spectrometer components will presented with special emphasis on the design of the be superconducting multipole triplets.

S3 Design and Status

Outline of this talk

- The GANIL SPIRAL2 Project
 - Overview talk this afternoon by E. Petit
- Physics with heavy ion beams at SPIRAL2
- Requirements/goals for the new spectrometer
- **Optics configuration**
- Technical components
- The superconducting multipole triplets
- The electric dipole

Scientific Program

In order to define the spectrometer specifications, we selected several specific experiments, as a model for the physics at S3, and simulate their kinematical characteristics:

- 1. Direct kinematics fusion reaction: ${}^{48}Ca + {}^{248}Cm \rightarrow {}^{292}116 + 4n$
- 2. Inverse kinematics fusion reaction: ²⁰⁸Pb +⁴⁸Ca \rightarrow ²⁵⁴No + 2n
- 3. Fusion of symmetric systems: ⁵⁸Ni + ⁴⁶Ti \rightarrow ¹⁰⁰Sn + 4n
- 4. Inverse kinematics fusion reaction (light system): ⁵⁸Ni + ¹²C \rightarrow ⁶⁸Se + 2n
- 5. Multi-nucleon transfer reaction (study of Neutron Rich Nuclei):
 - Light nuclei: ${}^{12}C + {}^{13}C \rightarrow {}^{11}Be + 2p$
 - Medium nuclei: 68 Se + 238 U → 80 Zn + X
 - Heavy nuclei: 238 U + 248 Cm → 262 No + X

SPIRAL2 under construction

Phase 1: High intensity stable beams in 2014 + Experimental rooms (S³ + NFS)Phase 2: High intensity Radioactive Ion Beams (RIB)

Benchmark reactions

SHE / VHE - Fusion-evaporation in direct kinematics

SHE / VHE ${}^{48}Ca+{}^{248}Cm \rightarrow {}^{292}116 + 4n$	Synthesis and delayed spectroscopy		
	Chemistry		
	Ground state properties (half-lives, masses, spectroscopy)		

	E [MeV/n]	<bp>[Tm]</bp>	<ep>[MV]</ep>	<q></q>	<v>[cm/ns]</v>	$\Delta \theta \ (\pm 2\sigma)[mrad]$	dQ	dp/p[%]
Beam parameters ⁴⁸ Ca	4.92	0.88	27	+17	3.0	± 8		±0.2
Recoil parameters ²⁹² 116	0.131	0.58	3	+25	0.5	± 40	± 2	±2.3

The ¹⁰⁰Sn factory

	Ground state properties (half-lives, masses, spectroscopy)
$N = Z$ ${}^{58}Ni + {}^{46}Ti \rightarrow {}^{100}Sn + 4n$	

	E [MeV/n]	<bp>[Tm]</bp>	<ep>[MV]</ep>	<q></q>	<v>[cm/ns]</v>	$\Delta \theta (\pm 2\sigma) [mrad]$	$dp/p(\pm 2\sigma)[\%]$
Beam parameters ⁵⁸ Ni	2.94	0.660	15.6	21.68	2.37	±8.6	±0.2
Recoil parameters ¹⁰⁰ Sn	0.882	0.559	7.27	24.17	1.30	±50	±7.4

Summary of Technical Challenges

High Beam intensity

- → High power target : $10p\mu A$ (= $6.10^{14}pps$) or more → Rejection of the beam : > 10^{13}
- Low Energy (fusion-evaporation residues)
- →Large angular acceptance : +/- 50 mrad X and Y
- →Large Charge state acceptance : Bp acceptance: +/- 10%

Many reaction channels (evaporation channels)

- →M/q selection : 1/350 resolution
- →Identification when possible

Transfer/Deep inelastic Reactions (non 0°)

- →Beam Sweeper for incident beam at 10°
- ➔ Specific Target chamber and beam dump

lrfu

saclay

S3 conceptual layout: Momentum Achromat, Mass Separator (MAMS)

Proposed Solution: Two-stage selection (Bp and m/q) that will achieve very good rejection of both the beam and adjacent mass channels of reaction products

S3 conceptual layout: Momentum Achromat, Mass Separator (MAMS)

Proposed Solution: Two-stage selection (Bp and m/q) that will achieve very good rejection of both the beam and adjacent mass channels of reaction products

Histogram at mass focal Plane

 48 Ca + 248 Cm \rightarrow 292 116 + 4n

δQ=±2, δm=±1, ΔBρ =4.6%

Overall transmission of fusion reactions ~50-60% for direct and symmetric kinematics

m/q resolution ~300-400 for 5 charge states

Optics team from GANIL, Saclay, Bucknell Argonne & Strasbourg

Plot showing position of mass lines, 5 charge states, 3 masses

Open-sided RT magnets with sextupoles

Olivier Delferrière CEA/DSM/Irfu/Leda

Spiral2 Week

MSU/NSCL SC Cold-iron Triplet for fragment separator

S3 Design and Status

Argonne concept of SC multipoles

 High quality and cost-effective multipole designs using SC magnets are being developed

S3 Design and Status

Winding with Pure sinm Ø Symmetry and its Shape Function - nearly perfect multipole fields

Peter Walstrom, NIM A519 (2004) 216

Harmonics for Quadrupole Magnet using Walstrom-type coils

Air-core 3D fields calculated within COSY ∞ by S. Manikonda

Preliminary model of a SC multipole triplet for S³

S3 Design and Status

Overall layout and concept of SMT

Summary of multiplet requirements for S3

- 8 triplets are required (quadruplet design changed to triplets to add space at target and focal planes while still fitting in the room)
- Can use 7 "closed" style with 1 "open-sided" for beam dump region
- SC multiplets: cost-effective, excellent field quality, shorter overall system
- Each "closed" singlet can have quadrupole, sextupole, & octupole coils, with 30-cm warm bore diameter & 40-cm effective length
- Fields required at 15-cm radius for 2 T-m rigidity (higher rigidity is easy):
 - Quadrupole: ~1.0 T
 - Sextupole: ~0.4 T
 - Octupole: ~0.2 T
- Cryogenics:
 - Warm iron used to speed up cool down
 - Small centralized cryo-system, ~100 W helium refrigeration with a small cold box (in the S3 vault)
 - Liquid helium bath for magnet coils
 - LN2-cooled shields
 - HTS and N2 gas-cooled leads
 - Operating current 200-400 amps (3 lead pairs per singlet)

Detailed beam dump concept being developed currently at Saclay

Beam Dump sketch

Safety related studies by Irfu/SENAC

E-dipole: +/- 300 kV, 20-cm gap

Argonne/IPN-Orsay collaboration

Preliminary Opera 3D model

Summary

- The S³ separator is being designed and is to be built and used at SPIRAL2 by a large international collaboration: SPIRAL2 phase 1 research by 2015
- This instrument will use the intense stable heavy ion beams of SPIRAL2 phase 1
 - Important physics goals include studies of N~Z nuclei around ¹⁰⁰Sn, as well as, nuclear structure, chemistry, and synthesis studies of very- and super-heavy elements
- There are active collaborations proceeding with R&D and studies of all S³ major subsystems – e.g. optics, magnets, E-dipole, targets, detectors, low energy branch
- Advanced optical simulations with a variety of magnet types are in progress
 - Simulations already show that SC multipoles with up to octupole corrections are required in the mass separator section
- RT and SC magnet design studies are in progress (mostly for "open-sided")
- Safety studies are continuing and include detailed studies of the target and beam dump areas
- The electric dipole of S³ is a limiting element for some beams and reactions
 - The ILL/LOHENGRIN E-dipole may be the best "model" for the S3 E-dipole