

The Facility for Rare Isotope Beams Project – Accelerator Challenges and Progress

Jie Wei On Behalf of FRIB Accelerator Team & Collaboration HIAT'12, Chicago, June 18, 2012

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

- Introduction
- Design philosophy
- Accelerator physics challenges
- Technology challenges
- Accelerator design
- Subsystem design and acquisition
- Future perspectives
- Acknowledgements

DOE Science Facility 20 Year Outlook

Facilities for the Future of Science A Twenty-Year Outlook

Defice of Science

Facilities for the Future of Science: *A Twenty-Year Outlook*

Contents

A Message from the	Secretary	3
Steward of the World	's Finest Suite of Scientific Facilities and Instruments	5
ntroduction		8
Prioritization Process	5	9
A Benchmark for the	e Future	10
The Twenty-Year Fac	cilities Outlook—A Prioritized List	11
Facility Summaries		14
Near-Term Prioriti	es	14
Priority: 1	ITER	14
Priority: 2	UltraScale Scientific Computing Capability (USSCC)	15
Priority: Tie for 3	Joint Dark Energy Mission (JDEM)	16
	Linac Coherent Light Source (LCLS)	16
	Protein Production and Tags	17
	Rare Isotope Accelerator (RIA)	18
Priority: Tie for 7	Characterization and Imaging of Molecular Machines	19
	Continuous Electron Beam Accelerator Facility (CEBAF) 12 GeV Upgrade	20
	Energy Sciences Network (ESnet) Upgrade	20
	National Energy Research Scientific Computing Center (NERSC) Upgrade	21
	Transmission Electron Achromatic Microscope (TEAM)	22
Priority: 12	BTeV	23
Mid-Term Prioritie	S	24
Priority: 13	Linear Collider	24
Priority: Tie for 14	Analysis and Modeling of Cellular Systems	24
	Spallation Neutron Source (SNS) 2-4MW Upgrade	25
	Spallation Neutron Source (SNS) Second Target Station	26
	Whole Proteome Analysis	27
Priority: Tie for 18	Double Beta Decay Underground Detector	27
	Next-Step Spherical Torus (NSST) Experiment	28
	Relativistic Heavy Ion Collider (RHIC) II	29
Far-Term Priorities	S	30
Priority: Tie for 21	National Synchrotron Light Source (NSLS) Upgrade	30
	Super Neutrino Beam	30
Priority: Tie for 23	Advanced Light Source (ALS) Upgrade	31
	Advanced Photon Source (APS) Upgrade	32
	eRHIC	32
	Fusion Energy Contingency	33
	High-Flux Isotope Reactor (HFIR) Second Cold Source and Guide Hall	34
	Integrated Beam Experiment (IBX)	35

FRIB Project at MSU Project of \$680M (\$585.5M DOE, \$94.5M MSU)

- Dec. 2008: DOE selects MSU to establish FRIB
- June 2009: DOE and MSU sign corresponding cooperative agreement
- Sept. 2010: CD-1 granted; conceptual design complete & preferred alternatives decided
- April 2012: performance baseline & start of conventional facility construction readiness completed

Growth from more than 500 employees today at NSCL, MSU

More than 1200 registered user at NSCL user group and at FRIB user organization

Michigan State University 57,000 people; 36 sq mi; \$1.8B annual revenue; 552 buildings

FRIB Accelerator Design Requirements

- Delivers FRIB accelerator as part of a DOE-SC national user facility with high reliability & availability
- Accelerate ion species up to ²³⁸U with energies of no less than 200 MeV/u
- Provide beam power up to 400 kW
- Satisfy beam-on-target requirements
- Energy upgrade by filling vacant slots with 12 SRF cryomodules
- Maintain ISOL option
- Upgradable to multiuser simultaneous operation of light/heavy ions with addition of a light-ion injector

The Science of FRIB is Endorsed by NSAC and NRC

Properties of nuclei

- Develop a predictive model of nuclei and their interactions
- Understand the nuclear force in terms of QCD
- Many-body quantum problem: intellectual overlap to mesoscopic science, quantum dots, atomic clusters, etc.

Astrophysical processes

- Chemical history of the universe
- Model explosive environments
- Properties of neutron stars, EOS of asymmetric nuclear matter

Tests of fundamental symmetries^s

 Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

• Bio-medicine, energy, material sciences, national security

FRIB Civil Design Completed Close Integration Between Accelerator & Civil Designs

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

J. Wei, HIAT'12 MOB01, Slide 8

Accelerator Design Philosophy

- A full-energy linac driver to provide beam quality that user desires
 - Full-scale CW linac using superconducting RF low- β cavities
- Meet stringent requirements demanded by experimental programs
 - Up to 400 kW of beams are focused to a diameter of 1 mm (90%)
 - Energy spread of 1% (95% peak-to-peak), and bunch length of < 3 ns
 - Intensity range of 10⁸ diagnostics & controls requirements
- Support FRIB as a national scientific user facility
 - Availability
 - Maintainability
 - Reliability
 - Tunability
 - Upgradability

Accelerator Availability & Upgradability Design Supports Multiple Operational Scenarios

- Baseline scenario (200 MeV/u, 400 kW) with liquid Li stripper for U⁷⁸⁺
 - Multiple ion sources for enhanced availability
- Alternative scenario with He gas stripper for U⁷¹⁺
 - Folding segment optics accommodates both stripping scenarios
- Fault scenario tolerated comparable to SNS day-1 condition
 - Tolerate 20% cavity underperformance; single cryomodule failure; lower stripping efficiency (charge state down to U⁶³⁺)
- Upgrade scenarios to 300 and 400 MeV/u supported

²³⁸U beam

Scenario	Charge state (average)	Energy [MeV/u] (baseline)	Energy [MeV/u] (baseline + + 3 C.M.)	Energy [MeV/u] (baseline + + 12 C.M.)	Energy [MeV/u] (baseline + 12 C.M.) (35% gradient enh. for β=0.29 & 0.53)				
Proposed Baseline Alternative Fault	78+ 71+ 63+	202 179 155	228 202 176	306 275 247	413 375 342				
FRIB Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University J. Wei, HIAT'12 MOB									

Accelerator Maintainability

- Limit uncontrolled beam loss below 1 W/m for all ion species
 - Proton: activation below 1 mSv/h; ²³⁸U: machine protection & cryo load req.
- Ion sources placed at grade level 10 m above tunnel
- Adopt bayonet/U-tube and integrate heat exchanger/JT valve to cryomodule improving individual cryomodule maintainability
 - Integrated designs of cryomodule, cryogenic distribution, and cryogenic plant

Accelerator Reliability Machine Protection on Acute and Chronic Beam Losses

- Addressing key reliability and availability aspects
 - Prevent permanent accelerator component damage
 - Minimize beam loss and residual activations
 - Reduce long and frequent beam interruption, e.g. solenoid quench, cryogenic load raise
- Beam loss detection is challenging: gas monitor insensitive to low energy HI beam; signal crosstalk due to folding linac footprint
 - Damages to accelerator components may occur in 40 μs ; MPS budget is 35 μs : 15 μs diagnostic, 10 μs control, and 10 μs beams in pipe
- Machine protection on acute (fast) chronic (slow) beam loss
 - Monitor beam loss using halo scraper rings at warm region between cryomodules
 - Gas chamber detection on acute beam loss at high energy
 - Beam current monitor at entrance and exit of each linac segments

Accelerator Tunability Example: Linac Segment 1 Cold BPM for On-line Tuning

- CD-1 lattice design did not allow tuning of whole machine at once
 - Lattice only allowed one-at-a-time steering making tuning operationally impractical (warm BPM at unfavorable phase-advance locations)
- Implement 39 "cold" beam position monitors (BPM) allowing practical beam steering for increased accelerator availability
 - Cold BPM facilitates response-matrix-based on-line tuning for greatly improved machine availability

J. Wei, HIAT'12 MOB01, Slide 13

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science

Michigan State University

Accelerator Physics Challenges

- Combined challenges of heavy-ion & high-power accelerator
 - Fractional uncontrolled beam loss at 10⁻⁶ per m level
 - Protons: activation & shielding issues; ²³⁸U: material damage & heat load
- Limited aperture of accelerating structures (low- β vs. elliptical cavity)
- Simultaneous acceleration & overlapping of multi-charge-state beams
 - Achromatic optics design (transverse) & cavity placement (longitudinal)
 - Diagnostics and control capabilities
- Accurate alignment of "cold" elements in cryomodules
 - 9-T solenoid & BPM to be aligned to < 1 mm under cryogenic condition
- Stringent beam-on-target requirements
 - Requiring corresponding beam diagnostics & control

Technology Challenges

Charge stripping

- Solid foils unable to survive on the high-power, high-charge-state beams
- Collaboration with ANL on liquid-lithium stripping film (low vapor pressure)
- Collaboration with BNL on plasma window to contain helium-gas stripper
 » Also benefit from development progress at RIKEN on helium gas stripping

Superconducting RF

- > 10 years of development at MSU on low- β SRF, benefiting from seminar work at INFN
- Collaboration with JLab and ANL
 » subcomponent development & processing
- Benefit from consultations with world experts from INFN, TRIUMF, JLab, ANL, FNAL etc.
- Collaboration with major institutes and laboratories world-wide on key accelerator subsystems

FRIB Accelerator Systems Division **Key Collaborators**

- ANL
 - Liquid lithium stripper
 - Beam dynamics verification
 - β=0.29 HWR design and prototype*
- BNL
 - Plasma window & charge stripper, physics modeling, database
- FNAL
 - Diagnostics
- JLab
 - Cryogenics systems design
 - QWR & HWR hydrogen degassing
 - PANSOPHY e-traveler
 - HWR processing & certification*
- LANL
 - Proton ion source, RFQ
- LBNL
 - ECR ion source; beam dynamics**
- ORNL
 - Diagnostics, controls
- SLAC**
 - **JLAC** Cryogenics**, SRF multipacting**, physics módeling

RIKEN Argonne

LOS Alamos

🚰 Fermilab

- Helium gas charge stripper
- TRIUMF
 - Beam dynamics design, SRF, physics modeling
- INFN
 - SRF technology
- KEK
 - SRF technology
- Jefferson Lab IMP
 - Magnets*
 - Budker Institute, INR Institute
 - Diagnostics
 - Tsinghua Univ. & CAS
 - **RFQ***
 - ESS
 - AP*
 - * Under discussion or in preparation
 - ** Completed

Charge Stripping Developments

Argonne

- Liquid lithium film established at ANL with controllable thickness & uniformity
- High-power beam test pursued with LEDA source
 - LANL proton source shipped to MSU for beam tests of the lithium film at ANL

J. Wei, HIAT'12 MOB01, Slide 17

Li film tests at MSU on density effects

ReA3 Linac: Two Cryomodules in Operation, One (β=0.085) Under Construction

Significant Margin Allowed 10% Design Gradient Increase

Margin of about a factor of 3 in Q, 40% in E field

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

R&D Completed: β=0.53 HWR SRF Cavities Vendor Fabricated Cavities Meet Performance Goals

Test results independently verified at JLab

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

J. Wei, HIAT'12 MOB01, Slide 20

β=0.53 Prototype Cryomodule Tests Successfully Meeting R&D Milestones in SRF Tests

FRIB Technology Demonstration Cryomodule R&D milestones completed

- TDCM operates stably at 2 K temperature with excellent cryogenic stability
- Cavities continually locked to design frequency; excellent low-level RF control
- Coupler operated at full CW power (4.5 kW) in full reflection within specified cryogenic load
- Magnetic shielding efficiency demonstrated
- Ancillary components (cavity, low-level control, coupler, tuner) operating
- Lessons learned to benefit the design of FRIB preproduction cryomodules
 - Team coordination, engineering culture enforcement, magnetic material management, tuner noise, coupler/cavity multipacting, solenoid lead heat load/pressure drop, NSCL cryogenics issues

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

SRF Acquisition Strategy Established Active Vendor Engagement is Key to Procurement Success

- FRIB actively expanding vendor base; risk sharing to reduce cost
 - Material (Nb, NbTi) order at final contracting stage with 3 providers
 - Largest SRF cavity order to a domestic provider: 174 β =0.53 HWRs
 - »3 vendors delivered FRIB cavities; 7 vendors responded to recent HWR requestfor-proposal (RFP)
 - » 174 cavities awarded in 3 production steps of 2-cavity, 10-cavity, and mass production (with 10% excess)
 - β =0.29 pre-production HWR: awarded to 2 vendors (2 cavities each)
 - β =0.085 pre-production QWR: RFP released

FRIF

Monitoring and acceptance procedures established to assure quality

Cryoplant Acquisition Strategy Established Same Key Individuals Delivered SNS Cryoplant

- FRIB and JLab agreed on Work-for-others agreement for FRIB cryoplant design/acquisition and in future support)
 - Similar to collaboration framework of SNS cryoplant acquisition
 - Design closely referring to that for JLab's 12 GeV upgrade
 - Separate procurements of cold boxes, compressors, auxiliary subsystems
 - MSU responsible for procurements in full support of JLab team's needs
- FRIB recruited Fabio Casagrande from SNS to lead FRIB team and work with Dana Arenius' team at JLab
 - A strong FRIB cryogenics team is crucial in the integration, commissioning, and maintenance of the system
 - MSU Controls team is responsible for the cryogenic controls

Attracted World Experts in Key Areas Aggressively Strengthened Technical Team Leadership

- Recruited top SRF experts in the world
 - A. Facco (INFN) and K. Saito (KEK)

- Built cryogenics team to leverage SNS success
 - Recruited F. Casagrande (ORNL) to head Cryogenics Department
 - JLab cryogenics team is closely engaged under FRIB/JLab WFO agreement
- Recruited seasoned linac world expert to head Accelerator Physics
 - Y. Yamazaki is ASD Deputy Director; consolidated AP Department

Successful in Building-up Accelerator Team Recruited 20 Core Team Leaders/Members (Examples)

Name	MSU Date	FRIB Position	Prior Project & Leadership Experience
Wei	9/2010	ASD Director	RHIC, US-LHC, SNS, CSNS, CPHS
Yamazaki	11/2011	ASD Deputy Director	TRISTAN, KEKB, J-PARC
Leitner M	9/2010	ASD Project Engineer	LBNL (SNS, VENUS IS, HIFS-VNL, NDCX-II)
Bultman	1/2012	Front End Project Engineer	LANL (SNS, DARHT, GTA)
Casagrande	12/2011	Cryogenics	INFN/CERN (ICARUS, EA), MIT/Bates, SNS
Chu	2/2011	Application Software	SNS, LCLS
Gibson	4/2011	Installation/Integration	SNS
Leitner D	10/2010	Commissioning	LBNL (88' Cyclotron, VENUS IS, DIANA)
Marti	7/1979	Charge stripper area	MSU (K100, K250, K500, K1200, ReA3)
Ozelis	3/2012	Cryomodule Project Engineer	FNAL (VTCF), JLab (SNS, CEBAF 12 GeV, FEL)
Peng	7/2011	Controls	SNS, LCLS
Pozdeyev	10/2009	Front End FS/BDS Area	VEPP2M, JLab FEL, BNL (RHIC, FEL, e-RHIC)
Russo	7/2011	Electrical Engineering	BNL (AGS/Booster, RHIC, SNS, LBNE)
Saito	2/2012	SRF	KEK (TRISTAN, KEKB, J-PARC, STF, ILC-GDE)
Webber	10/2011	Diagnostics	SSC, TEVATRON, FNAL Instrumentation
Zeller	10/1979	Magnet	MSU (K500, K1200, S800, CCP, A1900, RIA)
Zhang	2/2011	Linac Area	SNS

ASD Organization Ready for Scope Delivery Area & Control Account Managers Integrating Scope

B. Bird

Early Front End Establishment Planned Ion Sources at LBNL and MSU Demonstrated Performance

- Two ECRs to cover FRIB Project's commissioning & operation needs
 - ECRIS based on ARTEMIS design running at MSU is to be tested in FRIB configuration in 2012; adequate for commissioning & light ion operations
 - High-performance superconducting ECRIS is based on VENUS design; LBNL/VENUS source delivered twice FRIB ²³⁸U required intensity in 2011
 Team and expertise established at MSU

» Fabrication of ECR sextupole/solenoid coils and assembly of cold mass planned

ASD Integrated in Project Schedule

Facility for Rare Isotope Beams			FRIB IMS Baseline Summary								DCC T10100-SC-000011-R008 Printed 12-Apr-12, 15:48 Page 1 of 1							
Activity Name	2010	2011 FY11	2012 FY12	2013 FY13	2014 FY14	2015 FY15	2016 FY16	EY17	201 FY18		2019 Y19	2020 FY20	2021 FY21	2022 FY22	2023 FY23	2024 FY24	2025 FY25	
FRIB Summary Schedule			1112	1115	1114	1115	1110	1117	1110		110	1120			RIB Sum			
Project Early Completion	_										•	04-Oct-	19, Proje	ct Early C	ompletion			
FRIB NRC License Application Approval	_						▼ 08-	Apr-16, F		RC Lic	ense A	pplicati	on Appro	oval				
Conceptual Design, R&D, NEPA			 1	12-Oct-12	, Concep	tual De	sign, R&I	D, NEPA										
TEC	-													-Mar-21, 1	TEC			
Conventional Facilities Division	-	1 3-M	lay-11 A,	Conventio	onalFac	ilitiesDi	vision											
CF - Preliminary Design	-	2	26-Oct-11	A, CF - P	relimina	ry Desig	ın											
CF - Final Design		—	- 02-N	lay-12, CF	F - Final	Design												
CF - Site Prep		,	 0)1-Oct-12,	CF - Sit	e Prep										_		
CF - Excavation			,	2	6-Sep-13	3, CF - E	Excavatio	n					Lin	ac tuni	nel RFE			
CF - Linac Tunnel Construction							Apr-15, 0		c Tunne	el Con	structio	on						
CF - Target High Bay Construction							- 25-Ja	n-16, CF	- Targe	et Higł	h Bay (Construe	ction					
CF - Linac Support Area					-			eb-16, CF										
CF - Cryoplant Area Construction					4		24-Sep-	15, CF - 0	Cryopla	ant Are	a Con	structior	ı	Cryop	olant ar	ea RF	E	
CE - Complete BOD	_						▼ 01-E¢	b-16, CE	- Com	plete	ROD							
Cryogenics Plant & Distribution Fabrication & Assembly	у		-					1 7-F	eb-17,	Cryog	enics I	Plant &	Distributi	on Fabric	ation & As	sembly		
Cryogenics Plant Operational							,	19-Oct-	16, Cry	ogeni	cs Plar	nt Opera	itional					
Linac Front End - Fabrication & Assembly			-				▼ 19-Nov	-15, Lina	c Front	t End -	- Fabrio	cation &	Assemb	ly				
Linac Front End - Installation & Test	_							26-Sep-	16, Lina	ac Fro	nt End	I - Insta	llation &	Test				
Cryomodules - Fabrication, Assembly, & Test	_									12-Ju	n-18, (Cryomo	dules - F	abrication	, Assembl	y, & Test		
Cryomodules - Installation & in situ Test										23	B-Oct-1	8, Cryor	nodules	- Installat	ion & in si	tu Test		
Experimental Systems - Fabricate & Assembly					-					29-Ma	ay-18, I	Experim	ental Sy	stems - Fa	abricate &	Assemb	ly	
Experimental Systems - Install & Test										- 0	4-Dec-	-18, Exp	erimenta	al Systems	s - Install &	k Test		
Preoperations							•					04-Oct-	19, Preo	perations				
Front End Commissioning							•		Mar-17,	Front	End C	ommiss	ioning					
Linac Commissioning											- 10-	Jun-19,	Linac C	ommissio	ning			
Target Commissioning										-	- 10	Jul-19,	Target 0	Commissio	oning			
FRIB Integrated Commissioning											—	04-Oct-	19, FRIB	Integrate	d Commis	sioning		
Schedule Contingency											-		• 31	-Mar-21, \$	Schedule	Continge	ency	
	¢c	CD-1	•	CD-2/3A	¢c	D-3B		Ea	arly Co	mpleti	ion 🔶	•	¢c	D-4				
									-		Summary	/	Critical	Remaining W	ork	Page	e 1 of 1	

Summary

- FRIB project is proceeding with scope, schedule and cost baselined and ready for civil construction start
- Accelerator design meets FRIB performance requirements
 - Accelerator lattice footprint frozen since June 2011
 - Detailed developments continue on critical components- charge stripper and SRF
 - System designs optimized and value engineered for availability, maintainability, reliability, tunability, and upgradability
- Acquisition strategy has been meeting performance, cost & schedule requirements
- An excellent team is in place to lead accelerator systems delivery
- FRIB is looking for dedicated fellows & seasoned colleagues to join the project, and also welcomes collaboration in all forms
- Thank you!

Coauthors

- J. Wei^{#1}, D. Arenius², E. Bernard¹, N. Bultman¹, F. Casagrande¹, S. Chouhan¹, C. Compton¹, K. Davidson¹, A. Facco^{1,4}, V. Ganni², P. Gibson¹, T. Glasmacher¹, L. Harle¹, K. Holland¹, M. Johnson¹, S. Jones¹, D. Leitner¹, M. Leitner¹, G. Machicoane¹, F. Marti¹, D. Morris¹, J. Nolen^{1,3}, J. Ozelis¹, S. Peng¹, J. Popielarski¹, L. Popielarski¹, E. Pozdeyev¹, T. Russo¹, K. Saito¹, R. Webber¹, J. Weisend¹, M. Williams¹, Y. Yamazaki¹, A. Zeller¹, Y. Zhang¹, Q. Zhao¹
- ¹ Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 USA
- ² Thomas Jefferson National Laboratory, Newport News, VA 23606, USA
- ³ Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
- INFN Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy

Acknowledgements

- FRIB accelerator systems design has been assisted under work-for-others agreements by many national laboratories including ANL, BNL, FNAL, JLAB, LANL, LBNL, ORNL, and SLAC, and in collaboration with many institutes including BINP, KEK, IMP, INFN, INR, RIKEN, TRIUMF, and Tsinghua University.
- We thank the Accelerator Systems Advisory Committee chaired by S. Ozaki for their valuable advice and guidance, B. Laxdal, P. Kneisel, and A.C. Crawford for their participation in the FRIB weekly teleconference, colleagues who participated in FRIB accelerator peer reviews including A. Aleksandrov, G. Ambrosio, W. Barletta, G. Bauer, G. Biallas, J. Bisognano, S. Bousson, M. Champion, M. Crofford, R. Cutler, B. Dalesio, G. Decker, J. Delayen, H. Edwards, J. Error, J. Fuerst, K. Kurukawa, J. Galambos, J. Galayda, J. Gilpatrick, S. Gourlay, S. Henderson, L. Hoff, G. Hoffstaetter, J. Hogan, N. Holtkamp, H. Horiike, C. Hovater, H. Imao, R. Janssens, R. Keller, J. Kelley, P. Kelley, M. Kelly, J. Kerby, A. Klebaner, J. Knobloch, J. Mammosser, T. Mann, N. Mokhov, G. Murdoch, H. Okuno, P. Ostroumov, R. Pardo, S. Peggs, T. Peterson, C. Piller, J. Power, T. Powers, J. Preble, D. Raparia, T. Roser, R. Ruland, W.J. Schneider, D. Schrage, J. Sondericker, W. Soyars, C. Spencer, R. Stanek, M. Stettler, J. Stovall, V. Verzilov, P. Wanderer, M. Wiseman, L. Young, and A. Zaltsman, and colleagues who advised and collaborated with the FRIB team including A. Burrill, K. Davis, W. Hartung, A. Hutton, R. Kersevan, S.H. Kim, K. Macha, G. Maler, E.A. McEwen, W. Meng, T. Reilly, J. Sandberg, J. Tuozzolo, and J. Vincent.
- At Michigan State University, the FRIB accelerator design is executed by a dedicated team of the FRIB Accelerator Systems Division with close collaboration with the Experimental Systems Division headed by G. Bollen, the Conventional Facility Division healed by B. Bull, the Chief Engineer's team headed by D. Stout, and supported by the project controls, procurements, ES&H of the FRIB Project, by the NSCL, and by the MSU.

