Beam Physics Challenges in RAON

HB2014 workshop

Dong-O Jeon, Hyo Jae Jang, <u>Ji-Ho Jang</u>, Hyung Jin Kim, ASD members (RISP/IBS) Ji-Kwnag Hwang, Eun-San Kim (KNU)

RAON Layout and Beam Parameters

Institute for Basic Science

RAON Layout and Beam Parameters

RAON Site

RAON Site

Budget and Schedule

- The RAON Project Cost Accelerator and Experimental Systems : \$420M (46.02B KRW) Conventional Facility : \$568M (62.43B KRW) Site Cost : \$327M (36.00B KRW)
- Conventional facility budget was finalized 2014.05.
- Construction to be completed by 2021.12.

istitute for Basic Science

RAON Injector

- Injector consists of ECR IS, LEBT, RFQ and MEBT
- Two charge states (33, 34) of Uranium beams
- Fabrication of prototype components finished and their tests are in progress.

28 GHz ECR Ion Source

- Superconducting sextupole and solenoid prototypes were tested and achieved > 30% margin.
- Superconducting magnet assembly (sextupole + 4 solenoids) was completed.
- Cryostat fabrication was completed and test will be performed.
- Preparing for beam test in late 2014.

Cryostat fabrication

 B_{inj} = 3.5 T, B_{ext} = 2.2 T, B_r = 2 B_{ecr} , B_{min} = 0.7 T

Six 4K cryocoolers, One single stage cryocooler

LEBT

- Electrostatic quadrupoles: two charge states for uranium beams (33,34)
- MHB and VE: reducing rms beam emittance of RFQ output beams.

[ESQ triplet]

[Bending Magnet]

RFQ Beam Dynamics Design

[RFQ parameters]				
Parameters	Values			
Particles	Proton ~ ²³⁸ U ^{33+,34+}			
Frequency	81.25 MHz			
Input/Output Energy	10keV/u, 500 keV/u			
Peak Surface Field	1.7 Kilpartic			
Туре	Four Vane			
Operation Mode	CW			
Transmission	98%			
Length	4.94 m			

[PARMTEQ simulation]

RFQ Engineering Design

Technical design was completed (August 2013) and reviewed November 2013.

RFQ Prototype

RFQ Prototype

- vane machining and 3D measurement
- The 1st brazing failed (2014.04)
- Brazing procedure modified (2014.05)
- Confirmed brazing procedure (2014.06)
- RFQ prototype completed successfully through domestic vendor (2014.10)
- RFQ Prototype test

- 15kW SSA, coupler, RCCS are ready

[prototype RFQ]

[RFQ coupler leak test]

MEBT

- MEBT: 8 quadrupole magnets, 3 rebuncher cavities
- MHB and VE: reducing rms beam emittance of RFQ output beams.

RAON Superconducting Linac

- RAON SCL is designed to accelerate high intensity beams.
- Focusing by NC quad doublets rather than SC solenoids.
- Optimized geometric beta of SC cavities (0.047, 0.12, 0.30, 0.51).
- Employs larger aperture to reduce beam loss (40 / 50 mm aperture).
- Prototyping of SC cavities and cryomodules is under way and preparing for test.

Superconducting cavity

[Energy gain]

[QWR]

[HWR]

[Design Parameters]

Parameters	Unit	QWR	HWR	SSR1	SSR2
b _g	-	0.047	0.12	0.30	0.51
F	MHz	81.25	162.5	325	325
Aperture	mm	40	40	50	50
QR _s	Ohm	22	42	94	112
R/Q	Ohm	468	310	246	296
V _{acc}	MV	1.1	1.5	2.4	4.1
E _{peak}	MV/m	35	35	35	35
B _{peak}	mT	57	55	58	64
$Q_{calc}/10^9$	_	2.1	4.2	9.0	10.5
Temp.	К	4.5	2	2	2

Beam Dynamics in Linac (1/2)

- Lattice: Doublet with normal conducting quadrupole magnets
- ²³⁸U^{33+,34+} in SCL1, ²³⁸U^{77+~81+} in SCL2 after CSS

Beam Dynamics in Linac (2/2)

0

50

[Beam Envelope (rms)]

100

Distance[m]

[Normalized rms emittance in SC

150

Charge Selection Section

- 90-degree bending section: using mirror symmetry
- 2nd order achromat : 6 sextupole magnet to minimize T₁₂₆, T₂₆₆, T₄₃₆
- Emittance growth: $\Delta \varepsilon_x = 1.8\%$, $\Delta \varepsilon_y = 1.5\%$,

(first order achromat: $\Delta \varepsilon_x = 23.6\%$)

Machine Imperfection Effects

- Beam loss requirement (1W/m) is met even without orbit correction.
- It is expected that beam loss will reduce with orbit correction.

Item	Quantity	Error	
Cavity	Misalignment	1mm	
	Tilt	5 mrad	
	Voltage, phase	1%, 1°	
Quadrupole	Misalignment	0.15mm	
	Tilt	5 mrad	
	Magnetic field	1%	

[Error Limit]

[Beam Loss Result]

SC Cavity Prototyping

Prototype superconducting cavities are fabricated through domestic venders.

Cryomodule Prototyping

- Fabrication of QWR and HWR cryomodule prototypes is completed.
- LN₂ test is performed from Oct/22/2014.
- LHe test will be performed afterward.

[HWR cryomodule]

Summary (1/2)

- Integration of independent ISOL & IF systems is one of the distinct feature of the RAON.
- Technical Design Report was completed in 2013.09 meeting the project milestone.
- Optimization in beam dynamics is in progress.
- Prototyping of major accelerator parts has been in progress since 2013 through domestic vendors.
 - ECR ion source cryostat was fabricated (2014.09)
 - RFQ prototype fabricated successfully (2014.10)
 - SC cavity prototypes were delivered for test (since 2014.05)
 - Cryomodule prototypes to be delivered from 2014.12
- Some prototypes are in testing stage.
 - ECR ion source, RFQ, MEBT buncher
 - Superconducting cavities (QWR, HWR)

Summary (1/2)

- Experimental systems are being developed in parallel.
 - KOBRA is the first experimental system at RAON, which is a recoil spectrometer for nuclear structure and nuclear astrophysics studies.
 - MR-TOF system will be developed as a high precision mass measurement system by 2018.
- The conventional facility budget for the RAON was finalized in 2014.05.
- Conventional facility preliminary design contract is to be signed by Nov/28/2014.

Thank you for your attention! 감사합니다

