

Understanding Ion- Induced Radiation Damage in Target Materials

<u>M. Tomut*</u>, C. Hubert, W. Mittig, M. Avilov, F. Pellemoine, N. Horny, M. Chirtoc, M. Lang, R. Zabels, C. Trautmann

* GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt

Motivation

- high intensity heavy ions accelerator extreme challenges to traditional materials for: targets, beam catchers, collimators..
- understand materials failure due to extreme radiation
- develop failure criteria
- provide reliable lifetime predictions
- develop monitor system
- new solution for extreme conditions

In collaboration and synergy with activities at LHC (CERN), FRIB (Michigan), RIBF (RIKEN)

Overview

- Mechanism of swift heavy ion induced damage discussion of track formation with application to a common target material: graphite
- Heavy ion- induced structural and property changes in graphite
- High intensity operation conditions; high temperature recovery; pulsed beams
- Conclusions
- Outlook- monitoring and diagnostic of target and beam catcher material degradation

Swift heavy ions- energy deposition

Ion track formation in graphite

- homo-epitaxial re-growth in the wake of the ion trails
 high efficiency
- For heavy swift ions a fullerene transformation channel might be active in the track formation

Track	formation depends materials nature	
high sensitivity		low sensitivity
dE/dx threshold ~1 keV/nm	~20 keV/nm	~50 keV/nm
<u>insulators</u>	<u>semi-conductors</u>	<u>metals</u>
polymers	amorphous Si	amorphous alloys
oxides, spinels	■ GeS, InP, Si _{1-x} Ge _x	■ Fe, Bi, Ti, Co, Zr
ionic crystals	- Sì, Ge - C??	- Au, Cu, Ag,
- diamond	no tracks	
M.Tomut- HB'2012, Beijing, September 1	7-21, 2012 G S 1	FAIR

Heavy ion induced tracks in graphite (HOPG)

How to test extreme radiation conditions at future facilities with existing accelerators?

- limited beam time
- limited ion range at lower energy
- testing activated samples
- extrapolation to intensities not available yet
- which tests are suitable

- ➤ test 'worst case energy deposition scenario' → Bragg maximum
- >'easy' test to characterize the damage e.g. Raman spectroscopy
- > study flux dependence extrapolate
- > study high temperature irradiation behaviour
- study damage evolution vs. accumulated dose / flux (extrapolation?)
- > develop failure criteria from tests

Diffraction experiments at Petra 3 beamline at DESY

Defect formation as a function of dose and intensity - Raman spectroscopy on HOPG

Depth profiling of defects in along the ion track defects in electronic stopping vs. nuclear stopping range

Fine-grained isotropic graphite exposed to 1x10¹³ ²³⁸U ions/cm², 11.1 MeV/u

Ion- induced swelling and creep? Effects of high ion flux irradiation

Irradiation- induced stress

Ion-irradiation induced hardening

Hardening induced by irradiation of swift heavy Au ions (4,8 MeV/u)

Fatigue resistance degradation of ion- irradiated graphite

Nanoindentation impact testing of Au irradiated graphite

Cube Corner 20 mN max load; comparison pristine and irradiated samples

Structural defects recovery and effects on thermal conductivity for HT irradiation

XRD

Thermal diffusivity

Fine-grained isotropic graphite irradiated to 1x10¹⁴ with ¹⁹⁷Au ions/cm², 8.6 MeV/u at increasing temperatures

Influence of high temperature irradiation on hardening and embrittlement

Hardness

Young modulus

Fine-grained isotropic graphite irradiated to 1x10¹⁴ with ¹⁹⁷Au ions/cm², 8.6 MeV/u at increasing temperatures

Effect of pulsed beams

Quasi-continuous irradiation

¹⁹⁷Au: 5ms, 48 Hz, 4,8 MeV/u accumulated fluence 1x10¹⁴ i/cm²

Pulsed beams

¹⁹⁷Au: 150µs, 0.4 Hz, 4,8 MeV/u accumulated fluence 1x10¹⁴ i/cm²

Conclusions

General:

- Ion-induced disordering of graphite different form neutrons ⇒ swelling, stress concentrators, bending, hardening, degradation of thermal conductivity and fatigue resistance
- A steep degradation of properties takes place at doses corresponding to ion track overlapping (given by ion track size – depends on ion mass and energy)
- High temperature (above 1000 °C) operation of graphite extends lifetime due to defect recovery

Pulsed beams- FAIR & LHC:

- Fatigue induced by cyclic thermo-mechanical loading reduces lifetime
- Due to creep there is some stress accommodation, but lifetime depends on how much deformation one could tolerate

Monitoring systems for target materials

Problem: How to predict and localize failure

- in extreme operation conditions
- in high radiation fields
 - targets
 - protection elements
 - (beam catchers, collimators)
 - rf cavities

possible monitor systems to be tested

- Thermal imaging
- Acoustic emission
- Laser interferometry
- Resistivity monitoring non-contact

<section-header>

Eddy current

Acoustic emission monitoring -LHC collimators

Collaborators

GSI Darmstadt: C. Trautmann, D.Severin, M. Bender

TU Darmstadt: C. Hubert

MSU/ FRIB, East Lansing, USA: W. Mittig, M. Avilov, S. Fernandes, F. Pellemoine

UM, Ann Arbor, USA: M. Lang

University of Latvia, Institute of Solid State Physics, Riga : I. Manika, J. Maniks, R. Zabels

GRESPI-ECATHERM, Univ. Reims, France: N. Horny, M. Chirtoc

Super-FRS production target: key parameters

 problems to face:
 - radiation damage → material degradation

 thermal conductivity reduction, embrittlement, swelling

 - intense transient loads → pressure waves

 - cyclic thermal loads → thermal fatigue

High temperature irradiation of graphite targets

collaboration with W. Mittig et al. (MSU, FRIB)

