PXIE at FNAL

Nikolay Solyak Fermilab

52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB2012)

Beijing, September 17-21, 2012

Outline

- Introduction: Project X and PXIE, Goals
- Optics and Beam Dynamics
- R&D on critical components:
 - LEBT
 - RFQ
 - MEBT and Chopper design
 - SC RF: HWR and SSR1
 - Beam Diagnostics and Dump
- Conclusion

Project-X Scientific Mission

Project X is a multi-MW proton facility currently under development by Fermilab with national and international partners. The Project X delivery of high power beams to multiple experiments with differing energy and bunch structure requirements (Intensity Frontier).

Project X

The Project-X Collaboration

15 formal collaboration members supplemented with several informal collaborative relationships

Ion source and RFQ operate at 4.4 mA 77% of bunches are chopped @ 2.1 MeV \Rightarrow maintain 1 mA over 1 µsec

1 µsec period at 3 GeV

 Kaon pulses (17e7) 20 MHz
 1540 kW

 Nuclear pulses (17e7) 10 MHz
 770 kW

 Muon pulses (17e7) 80 MHz, 100 nsec burst @ 1 MHz
 700 kW

PXIE - Project X Injector Experiment

춖

- PXIE Front-End of the Project X CW linac
- PXIE should deliver 1 mA CW beam to ~25 MeV energy
 - -Arbitrary bunch pattern (5 mA from Ion Source-> 1 mA at the beam dump)
- PXIE includes:
 - 5 mA ion source
 - LEBT with pre-chopper
 - 2.1 MeV 162.5 MHz RFQ
 - MEBT with bunch-by-bunch chopper and 11 kW beam dump
 - Two SC cryo-modules: HW -162.5 MHz & SSR1 325 MHz
 - Diagnostics Section and 50 kW beam Dump

PXIE schematic layout. The total facility length is about 40 m.

- Specific technical PXIE program goals are to demonstrate (challenges):
 - reliable operation of a CW 2.1 MeV RFQ accelerator,
 - a bunch-by-bunch chopper,
 - low-в acceleration in SRF cryomodules
 - sufficiently small emittance growth during initial acceleration and
 - good particle extinction for the removed bunches (10⁻⁴ PXIE specs)
- PXIE has to operate at full Project X design parameters delivering up to 1 mA average current while accommodating up to 100% chopping of 5 mA RFQ beam.
- The beam current upgradability requirement (to 2 mA CW) is determined by possible staging of the Project X and its future upgrades (~20mA peak current at 325 MHz).

• The PXIE design and construction is being carried out by collaboration between Fermilab, ANL, LBNL, SLAC and Indian institutions. It is planned to have PXIE operational (at least 15 MeV, 1 mA CW, 5 mA peak, arbitrary bunch chopping) by the end of 2016.

PXIE optics (3- σ envelope)

Project X

Beam Dump (50 kW)

MEBT diagnostics

Violet - chopping system: 2 kickers (180° tr. phase adv. and absorber (90° from last kicker). Blue - bunching cavities. + other equipment (scarpers and diagnostics).

Yellow – mainly diagnostics to measure beam coming out of RFQ (#1) and to SRF linac (#8)

Green - vacuum pumps and diagnostics. Start/end- interfaces with the RFQ (left) and HWR

Vacuum:

- ~ 10⁻⁶ Torr in #5 where a large gas flow from the absorber.
- ~10⁻⁹ Torr in the last sections of MEBT from the absorber section (after #6):
- Vacuum separation insertion Ø10 mm L=200 mm

MEBT chopping

Chopped beam

 \Rightarrow ±250 V effective voltage on the kicker, 16 mm gap between plates DC correctors minimize vertical displacement for passing beam

Optics in SC cryomodules

- Structure of Half-wave cryo-module
 - 8 cavities, 8 solenoids (SCSCSCSCSCSCSC)
 - Starts with a solenoid to mitigate H₂ influx from MEBT
- Structure of SSR1 cryo-module
 - 8 cavities, 4 solenoids (CSCCSCCSC)
- Both cryomodules have
 - X & Y & S BPM near each solenoid
 - Transverse (x, y) correctors are located in every solenoid
 - Solenoid polarity is changed in each next solenoid (simplifies orbit correction)
 - Vacuum valves at each end
- HW-to-SSR1 interface
 - HW-to-SSR1 transition goes through room temperature vacuum chamber
 - Good from engendering and repair points of view but complicates beam dynamics
 - Both cryomodules face interface with cavities improves long. dynamics
 - Small space allocated (~20 cm)
 - Laser profile monitor, Pumping port

Project X will provide beams for different HEP experiments. Some of them (for example mu2e) have a strict requirement (<10⁻⁹) for beam extinction for removed bunches. An extinction level better than 10⁻⁴ is specified for the MEBT. This number is mainly determined by available in MEBT diagnostics.

Schematic of extinction measurement experiment, 3-sigma envelope for passing and deflecting beams are shown in blue.

Beam Dump (50 kW)

Project X

Structural Phase advances

Emittances growth

PARTRAN tracking, collimation

Beam Losses

- Intra-beam stripping < 0.5 W
- Non-Gaussian tail of RFQ longitudinal distribution (after RFQ) is the major source of particle loss, <3.10⁻⁴ (< 10 W) in SCRF section:
 - Small fraction of total beam loss will be intercepted by warm interface between CM's
 - Major fraction will be lost at 2 K
- It is still small relative to the RF losses in CM (~50 W)

Beam Losses for passing beam

6σ Gaussian vs. RFQ beam distribution

Project X

Output Beam @ MEBT End

TraceWin - CEA/DSM/Irfu/SACM

Output Beam @ HWR End

TraceWin - CEA/DSM/Irfu/SACM

Output Beam @ SSR1 End

-5

n

Xmax = 5.986 mm Ymax = 5.398 mm

-2 2 Po=0.026 deg Wo=23.45085 MeV

Project X

6

4

2

0

-2

-4

-6

TraceWin - CEA/DSM/Irfu/SACM

Croject X Longitudinal acceptance @ end of SSR1

Project X Mismatch effect on Longitudinal profile

Small effect on transverse beam profile

3 GeV Linac

Misalignment of components and RF jitter Studies

TRACK simulations of corrected/uncorrected beam centroid motion along the linac for the set of errors δ_{xy} =1mm for solenoids & cavities, δ_{xy} =0.5mm for quadrupoles, dynamic RF jitter of 0.5⁰ + 1.5% and quad roll of 5 mrad around the z-axis. One corrector and one monitor are used per solenoid and per quadrupole dublet. BPM resolution 30µm. No losses.

Status of R&D work on critical components for PXIE beamline

Ion Source

- The Linac beam starts from an H- ion source operating at a constant current, set for a given timeline:
 - The nominal ion source beam current used in Linac design is 5 mA
 - IS is capable of 15 mA; RFQ and MEBT are designed to 10 mA
 - If MI/Recycler is running/NOT running, the min IS current is 1.7 / 1mA

Low Energy Beam Transport

- Provides 30-keV beam transport from the Ion Source to the RFQ
 - two ion sources (not running concurrently); Dipole switch
 - Chopper (pulsed beam operation during commissioning)
 - Diagnostics and machine protection

Proiect X

LEBT (continue)

Project X

Longer LEBT option

(3 solenoids):

several diagnostics, in

avoid re-neutralization

• Beam optics in LEBT.

(and transition effects)

implementation of

particular after the

chopper.

RFQ design (LBNL)

		NO STREET
Parameter	Value	Units
lon type	H-	
Beam current (nom/range)	5 (1-10)	mA
Trans. emitt. (rms, norm)	<0.25	μm
Long. emitt. (rms)	0.8-1.0	keV-ns
Input energy	30	keV
Output energy	2.1	MeV
Vane-vane voltage	60	kV
RF power	100	kW
Beam Power	10.5	kW
Length	444.6	cm
Frequency	162.5	MHz

Project X

- 32 pi-mode stabilizers, 4 pairs in each module separate the dipole frequency to 17 MHz above the 162.5 MHz quadrupole frequency
- 80 tuners, 20 in each quadrant have a diameter of 6 cm, a nominal insertion of 2 cm, and a tuner sensitivity of 170 kHz/cm, all tuners moving together.

J.Staples

RFQ mechanical design

Pi-mode rod shifts dipole mode +17 MHz up

Linear power density =137 W/cm Peak heat flux = 0.7 W/cm². Tmax = 25° C

RFQ beam dynamics

Kicker

- Two versions are being pursued: 50 and 200 Ohm
- Each version must fit into a 65-cm drift: 2 pairs 25-cm long, 16 mm gap

Kicker driver

- Broad-band, 500 V, ~2 ns rise/fall time, 30 MHz average pulse rate
- AC-coupled rf amplifier (50-Ohm) or DC-coupled pulser (200-Ohm)

Beam absorber

- 20 kW max. dissipated beam power
- Issues: high power density, sputtering, high gas load

Wide-band Kicker designs

柋

50 Ω planar electrodes, connected in vacuum by coaxial cables with the length providing necessary delays

Objectives

Project X

- Two +/- 250 Volts kicker plates
- DC coupled drive to the kicker
- Pulse: ~2 ns rise time, ~1.5 ns wide flattop
- Handle power dissipation for high duty factor (140 W)
- Support variable high duty factor waveforms
- Handle rep. rates, ~30 MHz

Two helixes

Each helix is a flat wire wound with the 8.5mm helix pitch around a 28.6 mm OD copper grounded tube.

Test at 150 W amplifier

Test of the CBA 1G-150 amplifier with pre-distortion. (a) scheme of the test; (b) pre-distorted input signal and (c) corresponding output signal for a single pulse; (d) output for a CW pattern, corresponding to removal of four consecutive bunches followed by a one-bunch passage. Need 1 kW amplifier

Test of 200 Ω design

MEBT Absorber

- (a) beam incident on surface 29mrad,
- (b) axial stress relief slits,
- (c) shadowing step increment (not in scale)
- (d) $0.3x1 \text{ mm}^2$ pitch water cooling channels.

Conceptual design of the MEBT absorber. Length = 40 cm

Table 1: HWR main parameters

Project X

HWR design (ANL)

Donut shape geometry reduce effect of asymmetry in transverse beam dynamics

y-axis

9/18/2012

HWR Cryomodule

 $W_{OUT} = 11 \text{ MeV}$

SSR1 design and test

Proiect X

SRR1 cryomodule design

9/18/2012

Project X

N.Solyak, "PXIE at FNAL"

QWR Bunching Cavity

340 mm (flange-to-flange)

Parameter	Valu
Frequency. MHz	162.:
Q factor	1053
Aperture radius, mm	20
Gap, mm	2x23
Particle energy, MeV	2.1
Effect, shunt impedance, Ohm	5.3e
R_eff/Q	503
Effective voltage, kV	70
Power loss in copper, kW	0.92
Max. elec. surface field, MV/m	4.2

- No emittance growth is observed.
- Beam deflection is compensated if cavity is shifted down by 0.6mm.

NC RF separator

PXIE RF system

- The PXIE RF systems will include all CW amplifiers that are intended for reuse in the Project X front end.
- The complete PXIE RF system consists of three frequencies at power levels ranging from 4 to 150 kW (total of 21 RF systems)
- At PXIE frequencies and power levels, solid-state amplifiers have been chosen for the RF power sources (compact, reliable).

RF Sources for PXIE (CW)

162.5 MHz

- 1 RFQ 162.5 MHz 2 x 75 kW
- **3 copper bunchers** − 4 kW
- 8 SC HWR 4 kW

325 MHz

○ 8 SC SSR1 - 4 kW

243.75 MHz

1 copper RF separator – 7 kW

Drive Amp

Power Amp

Conclusions

- We have good understanding of the PXIE concept.
- Design work on critical components (RFQ, Chopper, HWR and SSR1 cryomodules) is proceeding well.
 - Expect to have conceptual design by the year end
- No obvious showstoppers
- Plan to have PXIE working at design parameters at the end of 2016.

• Thanks for providing information for this talk:

S.Henderson, S.Holmes, R.Kephart, S.Nagaitsev, V.Lebedev, A.Shemyakin, L.Prost, A.Saini, F.Ostiguy, J-P.Carneiro, V.Yakovlev, Y.Eidelman, G.Saewert, J.Staples, P.Ostroumov, L.Ristori, T.Nicol, G.Romanov, I.Gonin,

..... (Project X team).....

Thanks for your attention !

Coupler design (ANL)

Table 2: Coupler Design Parameters		
Parameter	Value	
Design RF power, kW	15	
Outer diameter, mm	50	
S11 @ 162.5 MHz, dB	-30	
Static load to 2K, W	0.06	
Static load to 5K, W	1.6	
Static load to 70K, W	2.6	

50 Ω coaxial capacitive coupler

- Adjustable in the range of Q=10⁵ 10⁷
- Two ceramic windows (70°K and 300°K)

Two bellows plated by 20 µm of Cu

Project X

300