

FRIB Accelerator Beam Dynamics Design and Challenges

Qiang Zhao Facility for Rare Isotope Beams, Michigan State University HB'12, Beijing, Sept. 19, 2012

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

FRIB Project at MSU Project of \$680M (\$585.5M DOE, \$94.5M MSU)

- Dec. 2008: DOE selects MSU to establish FRIB
- June 2009: DOE and MSU sign corresponding cooperative agreement
- Sept. 2010: CD-1 granted; conceptual design complete & preferred alternatives decided
- April 2012: performance baseline & start of conventional facility construction readiness completed
- Sept. 2019: Early Completion
- March 2021: CD-4

Growth from more than 500 employees today at NSCL, MSU

More than 1200 registered user at NSCL user group and at FRIB user organization

FRIB Linac (Heavy Ion) vs. Proton Machine

- Both produce high power beam \rightarrow Deal issues with beam loss
- Lower radiation yield from heavy ions than that of proton with same beam loss at similar beam energy
 - Save shielding, but conventional BLMs not applicable at low energy
- Higher power-density for heavy ion beam loss (Bragg peaks high)
 - Easy to damage beam element
- Heavy ion beams for nuclear physics experiments are mostly high duty factor or CW, while pulsed proton beams required by neutron users in most cases
 - Lower peak current for HI \rightarrow small/negligible space charge effects
- Focusing not as frequent as space charge dominated proton
 - Cold solenoid inside cryomodule is still preferred/necessary
- Make use of low beta superconducting accelerating structure
 - Phase and amplitude of each cavity independently adjustable

FRIB Linac Lattice and Beam Dynamics Requirements

- 400 kW CW machine with uncontrolled beam loss limited to < 1 W/m</p>
- Beam energy on target ≥ 200 MeV/u
- Accelerate all varieties of stable ions → Uranium is most challenging in design (two & five charge states before and after stripper, respectively)
- Minimize project construction costs \rightarrow Compact double-folded layout
- Maintain potential enhancement → Energy upgrade, ISOL targets, light ion injector

Example of Lattice Optimization at Stripper Area

FRIB Civil Design Completed Close Integration Between Accelerator & Civil Designs

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Accelerator Beam Dynamics Challenges

- Simultaneous acceleration of multi-charge-state beams
 - Large acceptance lattice
 - Velocity equalizer and HV platform scheme at LEBT
 - Achromatic and isochronous bending optics design
 - Superimposition of multi-charge states
 - Minimization of emittance growth at charge stripper
- Uncontrolled beam loss at ≤ 1 W/m (or 10⁻⁶) level to avoid cavity quench and material damage, low cryogenic heat load, and facilitate hands-on maintenance
- Relatively small beam envelop and orbit excursion due to the limited aperture of low beta accelerating structures
- Tolerate larger alignment error of "cold" elements in cryomodules
 - SC solenoid to be aligned to \leq 1 mm under cryogenic condition
- Meet stringent beam-on-target requirements

End-to-end Simulation Performed with Multi-charge-state Uranium Beam

- Realistic initial particles generated based on measurements at VENUS
 - Two charge-states uranium beam

Meet Beam-on-target Requirements with Five-charge-state Uranium

 Beam-on-target requirements met even for the most challenging multicharge state uranium beam

Parameter	Required	Achieved	Meet
Beam spot size (1 mm)	≥ 90%	96%	\checkmark
Angular spread (±5 mrad)	≥ 90%	100%	✓
Bunch Length (3 ns)	≥ 95%	100%	✓
Energy spread (± 0.5%)	≥ 95%	100%	\checkmark

Nominal Machine Errors Used in Beam Simulations

Beam element placement errors

Name	Value	Distribution
Cold element displacement	±1 mm	Uniform
Warm element displacement	±0.4 mm	Uniform
Warm element rotation	±2 mrad	Uniform

Cavity RF errors

Name	Value	Distribution
RF amplitude fluctuation	±1.5%	Gaussian (σ=0.5%)
RF phase fluctuation	±1.5°	Gaussian (σ =0.5°)

Measured RF errors at MSU are much smaller

BPM uncertainty with respect to focusing element

• ± 0.4 mm, uniform distribution

Stripper thickness variation

• $\pm 20\%$, uniform distribution

Beam Evaluation Results with Machine Errors Beam Envelope Well Within Aperture

- Beam envelope growth mainly due to misalignment (correctors were on)
- RF errors cause significant longitudinal emittance growth but not coupled into transverse
- No uncontrolled beam losses observed
- Evaluation of room temperature magnets 3D fields effect ongoing

Beam Loss Evaluation Performed with Larger RF and Placement Errors

- Increased errors in simulation by 50% and 100% larger for all RF and positioning errors than the nominal ones
 - Performed 350 seeds with 1 million particles each

cases	nominal errors	50% larger errors	twice larger errors
no beam loss	100%	91%	60%
loss but <1W/m	0	7.8%	26%
loss > 1W/m	0	1.2%	14%

- Beam loss initiated in low energy side due to the larger RF errors
- Probability of beam loss >1 W/m increases sharply with errors
 - It's important to keep errors within nominal tolerances
- Space reserved for beam collimation/scraping in the warm transport sections (e.g., upstream of segment 2)

Scenarios of Fault Condition Studies

- Our studies show that following fault conditions seem manageable
 - Single cavity failure
 - Single solenoid failure
 - 20% lower cavity gradient
 - One cryomodule failure
 - $\pm 20\%$ randomly off nominal cavity voltage (lesson learned from SNS)

Summary of SNS Cavity Performance

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Example of Beam Loss Distributions with Single Cavity Failure and No Adjustment

- Malfunction of the control of the 3rd beta=0.29 HWR in the 1st b29 CM
- Warm scraper ring with aperture diameter of 28 mm installed

• Electrical current of tens uA on one ring \rightarrow enough signal to trig MPS

Example of ±20% randomly off nominal voltage for all QWRs

 Amplitudes of all QWR cavities are randomly off by maximum of ±20%, cavity phases are adjusted to keep the same synchronous phases as in the design case

- Longitudinal acceptance reduced by 15%, not likely to lead to beam loss
- Output energy slightly changed (within ~1%)
- Matched conditions change, but input to linac can be adjusted to rematch

Beam Tuning Strategy Developed

- Use low current, short pulse, reduced rep rate to decrease beam power (protect damage to machine)
 - Beam current as low as 50 euA
 - Pulse duration as short as 50 us
 - Rep rate as low as possible (1 Hz, even single shot)
- Start with single charge state
 - Charge state controlled by selection slits
 - Tune with reference charge, check other charge state(s)
- Model-based on-line tuning
 - Reduce tuning and recovery time
 - Perform global optimization
- Cavity phase scaling
 - Cavity phase can be set based on the result of previous phase scanning

Beam Tuning – Orbit Correction Simulation Performed

 Without orbit correction beam most likely will not thread through Segment 1 to the beam dump with solenoid misalignment of ±1mm

- Initial orbit correction needs section by section
 - Sufficient number of BPMs and steering correctors » It still works with a couple of BPMs or corrector off
 - Model base orbit corrections will significantly reduce tuning time

Beam Tuning – Longitudinal Overlap of Twocharge-states Beam at Exit of LS1

Longitudinal oscillation of two-charge-state beam along Segment 1

Phase of cavities are adjusted for the overlap of the two-charge-state beam at the exit of Segment 1 by measuring the timing of each charge state beam

Summary

- FRIB project is proceeding with scope, schedule and cost baselined and ready for civil construction start
- FRIB linac design has been optimized and finalized, consistent with baseline requirements and future upgrades
 - Accelerator lattice footprint frozen since June 2011
- End-to-end beam simulations performed, and error and fault conditions explored
 - Results meet proposed baseline requirements
 - Beam simulation studies show that lattice design is robust
- Linac beam tuning strategies and algorithms studied, and virtual accelerator and on-line control mode being developed to support commissioning and operations

Acknowledgements

- Author list: Q. Zhao, A. Facco, F. Marti, E. Pozdeyev, M. Syphers, Y. Yamazaki, Y. Zhang, J. Wei, X.Wu
- We thank our colleagues at MSU: N. Bultman, P. Chu, S. Chouhan, C. Compton, P. Gibson, P. Guetschow, K. Holland, M. Johnson, G. Morgan, D. Leitner, M. Leitner, D. Morris, S. Peng, J. Popielarski, T. Russo, K. Saito, M. Shupter, R. Webber, and many others.
- We also thank A. Aleksandrov, J. Bisognano, H. Edwards, J. Galambos, S. Henderson, G. Hoffstaetter, N. Holtkamp, B. Laxdal, P. Ostroumov, S. Ozaki, R. Pardo, S. Peggs, J. Qiang, D. Raparia, T. Roser, J. Stovall, L. Young, etc. for their valuable advice, discussions, and collaborations.
- This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Backup Slides

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Q. Zhao, HB'12 WEO3B01, Slide 21

Beam Dynamics Challenges – Prebunching at LEBT to Reduce Longitudinal Emittance

Two charge-state injection

- Acceleration/deceleration cavity VE (B2): accelerate lower charge state beam and decelerate higher one (same bunch energy into RFQ)
- HV section between MHB (B1) and VE (B2): adjust relative time flight difference between the two charge-state beams

End-to-End Simulation Performed with Argon Beam

- Argon is identified as one of the primary beam for commissioning
 - easy to produce
 - can accelerate >200MeV/u on target without stripper
- Single charge-state argon (q=10, A=36) selected from ion source
- Fully stripped into q=18, with same q/A as oxygen (8/16) after stripper

Overall performance "better" than multi-charge uranium beam

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Q. Zhao, HB'12 WEO3B01, Slide 23

Accelerator Availability & Upgradability Design Supports Multiple Operational Scenarios

- Baseline scenario (200 MeV/u, 400 kW) with liquid Li stripper for U⁷⁸⁺
 - Multiple ion sources for enhanced availability
- Alternative scenario with He gas stripper for U⁷¹⁺
 - Folding segment optics accommodates both stripping scenarios
- Fault scenario tolerated comparable to SNS day-1 condition
 - Tolerate 20% cavity underperformance; single cryomodule failure; lower stripping efficiency (charge state down to U⁶³⁺)
- Upgrade scenarios to 300 and 400 MeV/u supported

²³⁸U beam

Scenario	Charge state (average)	Energy [MeV/u] (baseline)	Energy [MeV/u] (baseline + + 3 C.M.)	Energy [MeV/u] (baseline + + 12 C.M.)	Energy [MeV/u] (baseline + 12 C.M.) (35% gradient enh. for β=0.29 & 0.53)
Proposed					
Baseline	78+	202	228	306	413
Alternative	71+	179	202	275	375
Fault	63+	155	176	247	342
FRIE	3	acility for Rare Iso S. Department of Energy Office	tope Beams of Science		Q. Zhao, HB'12 WEQ3B01, Slide 24

Beam Sensitivity to Solenoid Setting Errors/Fault

- Solenoid settings will deviate from design limited by diagnostics
 - Transverse matching along the linac will not be ideal
- Settings of all solenoids in Segment1 were assumed to have 1%, 2%, 5% uncertainty with uniform distribution
 - Each has 100 seeds
 - RMS distribution of beam size increase seems linearly with setting errors
 - RMS distribution of emittance grows faster than that of beam size

Dynamic errors (e.g. power supply fluctuations) typically much smaller

Vertical Kick from QWRs Compensated

 Vertical kick due to the asymmetrical RF fields of QWR can be compensated by shifting cavity position vertically (0.2 mm for β=0.041 cavity and 1.5 mm for β=0.085 cavity)

» Maximum beam centroids offset reduced from ~5 mm to ~0.3 mm

Effect of Magnet Higher Order Multipoles

Magnet higher orders in bending area

- Dipoles non-uniformity (Δ B/B): ±0.3%
- Combined function quadrupole/sextupole
 » Quadrupole non-uniformity (ΔB/B): ±0.7%
 » Sextupole non-uniformity (ΔB/B): ±5%
- Impact beam on target (without other errors)
 - Percentage of beam within 1mm changed from 96.4% into 93.5%
 - Non-uniformity of dipoles in second bending area seems more sensitive

Beam simulation with 3D magnet fields to be performed

Example of One β=0.085 Cryomodule Failure and Lattice Recovery

- Move the last β =0.085 cryomodule to replace the failed one
- Need 4 additional quads placed on the location of the moved module
- Reach 200 MeV/u on target
 - Segment 1 output energy 15.4 MeV/u instead of 16.6 MeV/u
 - Average from stripper keeps same <Q> = 78
 - 200 MeV/u segment 3 output by adjusting phase of 1.5° for β =0.53 cavities
- Transverse and longitudinal distribution on target can be recovered
 - Two charge states overlap in longitudinal plane before stripper by slightly adjust the phase of all β =0.085 cavities

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Beam Loss Distribution with Different Scenarios

- 2x larger RF jitter and 2x positioning errors than the nominal ones
 - Loss mainly distributed in the LS2, BDS and bending areas, but not in the LS1 and LS3

• 4x larger RF jitter, 3x larger input beam emittances

- Loss still mainly distributed in the LS2, BDS and bending areas, occurred but probability was low in the LS1 and LS3
- Beam loss initiated in low energy side due to the larger RF errors

Beam Tuning – Twiss Parameter Matching Simulation Performed

Obtain Twiss parameters by measuring sigma matrix

Same method applies transverse matching by quad/solenoid scanning

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Beam Tuning – Cavity Phase Setup Simulation Performed

- Scan the cavity phase (ϕ_i) and measure the corresponding beam energy change (ΔE_i) using downstream BPMs
 - Find the "zero" phase where energy gain is maximum
 - Setup the cavity synchronous phase ϕ_{s} with respect to the "zero"
 - Obtain cavity voltage (V_c) by

$$\Delta \mathbf{E}_{\mathbf{i}} = \frac{\mathbf{q}}{\mathbf{A}} \cdot \mathbf{V}_{\mathbf{c}} \cdot \cos \varphi_{\mathbf{i}}$$

» Known q/A, ϕ_i » Measured ΔE_i for ϕ_i

• Downstream cavities off, solenoids may on during phase scanning

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Phase scan of β =0.041 QWR with

FRIB Resonators and Cryomodules: Beam Dynamics Specifications

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University