Beam Loss and Collimation in the ESS Linac

Ryoichi Miyamoto (ESS)

B. Cheymol, H. Danared, M. Eshraqi, A. Ponton, J. Stovall, L. Tchelidze (ESS) I. Bustinduy (ESS-Bilbao) H. D. Thomsen, A. I. S. Holm, S. P. Møller, (ISA)

September 19th, 2012

HB2012

Introduction to ESS

ESS status and schedule

European Spallation Source (ESS) is a spallation neutron source based on a 5 MW proton linac, build in Lund, Sweden.

- 2009-2012: Accelerator Design Upgrade Project
- 2012 (Sept): Technical Design Report (with schedule, costing)
- 2012 (Q4): Review
- 2013 (Q1?): Ground breaking
- 2018 (?): first proton beam
- 2019 (?): first neutron
- 202?: 5 MW operation
- ~2070: decommissioning

ESS linac

One of the biggest challenges for a high power proton linac is to control slow beam losses and this requires comprehensive efforts of

- Identify the loss limit allowing handson maintenance
- Simulate/understand beam/machine conditions vs. beam loss patterns
- Establish collimation scheme
- Prepare diagnostics and tuning scheme

ESS high level parameters

Energy [GeV]	2.5
Beam power [MW]	5
Repetition rate [Hz]	14
Beam current [mA]	50
Beam pulse [ms]	2.86
Duty cycle [%]	4

Outline

- Beam Loss Limit in the RFQ and DTL
- Error Studies with a Tracking Simulation
- MEBT Collimation
- HEBT Collimation

Beam Loss Limit in the RFQ and DTL

Dose rate simulation for RFQ/DTL with MARS

- 1 W/m also applies to the RFQ and DTL?
- Use "15 μSv/hr at 40 cm" (CERN's supervised temporally work places) as our criterion.
- Calculate radiation activity for the RFQ and DTL with MARS.

1 W/m doesn't apply to RFQ/DTL (from the point of view of activation)

- Large margin wrt 15 μ Sv/hr.
- Activation very low below 30 MeV.
- Similar studies planned for superconducting sections.

Error Studies with a Tracking Simulation

SCL error study with TraceWin

- 1 W loss from a 5 MW beam **→** 20 particles loss in a 100M macro particle simulation.
- **Possible to simulate loss patterns vs. machine/beam conditions?**
- Quad and cavity static error study for the SCL (see TUOB02):
 - Individual error (identifying the boundary)

EUROF

PALL

- All the errors combined (100k particles \times 1k linacs)

Quadrupole		
Alignment in x and y [mm] Rotation around z axis [mrad]	0.3 1	
Gradient [%]	0.75	
Cavity		
Alignment in x and y [mm] Rotation around x and y axes [mrad] Accelerating field strength [%] Accelerating field phase [deg]	3 3 1.5 1.5	 Values for the considered Errors distribution

- e worst case
- uted uniformly

Error study result

- Emittance grows but no loss. (At least proving robustness of the lattice.)
- More detailed studies planned including dynamic errors, upstream sections.... (Anything else?)

MEBT Collimation

Current MEBT layout and full beam envelope

- MEBT: 1) matching from the RFQ to DTL, 2) a fast chopper, 3) diagnostic devices, 4) collimation.
- MEBT lattice: 3 bunchers and 9+1 quads.
- Changes from the May design (an extra buncher + quad re-adjustment) improved the dynamics.

Loss limit of a MEBT collimator?

- Assumptions: graphite jaw, Gaussian beam, remove beyond 3σ (~0.25%, ~15 W)
- Graphite may suffer mechanical damages beyond ~1500 C°.
- In the simulation, stick to ~15 W and avoid where $\sigma_x \sim \sigma_v \sim 1$ mm.
- Better to know the beam size vs. loss limit in detail.
- Other materials planned to be studied.

Halo growth occurs in the last half of the MEBT (sometimes in the final 10-20 cm)

Phase advance under strong space charge

- The standard scheme of two collimators separated by 90 deg and etc is not optimum for the ESS MEBT. (Doesn't apply to HEBT.)
- Phase advance of an individual particle (angle in the normalized phase space) depends on its initial position due to strong space charge.
- Angular distribution of halo particles is not uniform.

(Primitive) way to determine collimator locations

- Mechanical constraints \rightarrow a collimator placed only between quads.
- Identify halo particles at the end of the MEBT.

EUROPEAN

- Trace back the distribution of the halo particles at possible collimator locations and identify the optimum set of locations.
- Stick to ~15 W and avoid where the beam is smaller than $\sigma_x \sim \sigma_y \sim 1$ mm.
- Chaotic behavior? Also indicate collimation effective in the later part.

R. Miyamoto, Beam Loss and Collimation in the ESS Linac, HB2021

Improvement with collimators

OURCE

HEBT Collimation

September 17th, 2012

The HEBT (2012 May 28)

Dipoles, Quadrupoles Octupoles

- >S1: Energy upgrade + movable collimators.
- > S2: Achromatic elevation. Tune-up lines below.
- S3: Linear + non-linear (octupole) expansion of beam + fixed collimator.

HEINE DØLRATH THOMSEN

September 17th, 2012

HEBT Collimation Strategy

Fixed Target Collimator:

- > Upstream of PBW, target, etc.
- Halo & over-focused particles, 25 kW
- To be designed by NCBJ, Świerk, Poland

Movable Collimators:

- > Uncontrollable losses in HEBT, 24 kW / 8 jaws
- > Relieve fixed collimator
- Protect downstream aperture restrictions
- Handle and measure unforeseen halo?

A MARS15 Model

> Jaws: 20 x 50 x 800 mm³ SS316

- Collimator radiation shield: H x W x 1.3 m SS316
- » Beam pipe: ID Ø100 mm
- >Magnet poles
- > *Extreme beam* on jaws: > Exp. Halo: $3.3 \sigma < x < 10 \sigma$:
 - \rightarrow ~7 mm half-gap (3.4 σ)
 - > Fractional beam ~ 3.1E-3
 - > Power ~ 15 kW in H-plane!

1st Jaw

H Phase space before 1st Jaw

H Phase space density after 1st Jaw

300 mm SS316

x' [mrad] 30 I 3.4 RMS ε, 10 ransmissi_i 10 rms sigma 10 RMS ε, 20 0.6 HEBT Admittance 0.4 10 0.2 1 0.0 utscattering -0.2 -10 10⁻¹ -0.4 3.3 rms sigma -0.6 -20 -0.8 10^{-2} 50 15 25 20 -30 -20 -10 10 20 30 40 x [mm] x [mm] (~6% @ 800 mm) → masks & absorbers AARHUS UNIVERSITET

Particles on Collimator Proton Fluence @ 3.4 σ Coll. Fu

Further Work

- > Finalize materials and dim.
- Masks? Activation?
- Repeat optimized col. system after µ_{x,y} = 90°
- > Effects of beam offsets for
 - > Collimators
 - > Beam on target.

25

Conclusions

- ESS will be a spallation neutron source based on 5 MW proton linac, based at Lund, Sweden. It is planed that the commissioning starts by the end this decade and 5 MW operation starts in early 2020s.
- Control of slow beam losses is one of the biggest challenge for the ESS linac.
- Dose rate simulations indicate that we may be able to loose the 1 W/m criterion for the RFQ and DTL.
- Error study has been initiated for the SCL but no loss has been observed in the simulation, demonstrating robustness of the present lattice design.
- MEBT and HEBT collimation schemes are studied.
- Comprehensive study of the beam loss will be continued and improved. Suggestions and comments are very welcome!

Thanks for your attention!

Backup Slides

MEBT beam dynamics improvement

• Changes from the May design (an extra buncher + quad re-adjustment) improved the dynamics.

Halo definition (Wangler's)

• The *spatial profile parameter* (Kurtosis):

$$h = \frac{\langle x^4 \rangle}{\langle x^2 \rangle^2} - 2$$

• The halo intensity parameter (extension to 2D)

$$H = \frac{\sqrt{3}}{2} \frac{\sqrt{\langle x^4 \rangle \langle x'^4 \rangle + 3 \langle x'^2 \rangle^2 - 4 \langle x^3 x' \rangle \langle xx'^3 \rangle}}{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2} - 2$$

• The normalization "2" to make the "KV" = 0 and "Gaussian" = 1.

Output distribution and halos w/ and w/o collimators

R. Miyamoto, Beam Loss and Collimation in the ESS Linac, HB2021

Distribution out of the linac and halos w/ and w/o collimators

• Transverse emittances are slightly improved as well.

EUROPEAN SPALLATION

SOURCE

• The influence on the loss in the SC sections haven't been studied yet.

September 17th, 2012

Collimator Before Target Region

SS316 + concrete?

> Fixed collimator

- Partly masks PBW and target
- To handle halo & overfocussed particles (octupoles).
- > Could be 5-25 kW (avg.)
- > Built to handle a full pulse (360 kJ)?
 > MPS: beam off in <0.4% pulse!

Sketch:

To be designed by NCBJ, Świerk, Poland