Simulation and Measurement of Half Integer Resonance in Coasting Beams in the ISIS Ring

C M Warsop,
D J Adams, B Jones, S J Payne, B G Pine, H V Smith, R E Williamson

ISIS, Rutherford Appleton Laboratory, UK

HB 2012, Beijing, China, September 2012
Contents

Introduction
The ISIS Synchrotron
Review of ISIS Half Integer Studies Experiments
 Machine Configuration
 Diagnostics
 ORBIT Models
 Loss and Profile Measurements: Halo
Models and Future Work
Conclusions
Acknowledgements
1. Introduction

• ISIS Facility
 Operation centres on 800 MeV proton RCS
 High intensity limits important

• ISIS Developments and Upgrades
 Ongoing operations, improvements (0.2 MW)
 Upgrade 1: New 180 MeV Linac (~0.5 MW)
 Upgrade 2: New 3.5 GeV RCS (~1+ MW)
 Upgrade 3: New 800 MeV Linac (2-5 MW)

• Limiting Factors
 Space Charge, Instabilities, Injection, ...
 Half integer an important factor for all

• Related Papers
 MOP257 (BGP), WEO3C01 (BJ)
 TH01A04 (REW), TH01C02 (DJA)
2. The ISIS Synchrotron

- Circumference: 163 m
- Energy Range: 70-800 MeV
- Rep Rate: 50 Hz
- Intensity: 2.5×10^{13} ppp (3.0×10^{13})
- Mean Power: 160 kW (192 kW)
- Losses: Inj: 2%, Trap: <5%, Acc/Ext <0.1%
- Injection: 130 turn, charge-exchange
- Acceptances: collimated $\sim 300 \ \pi \ \text{mm} \ \text{mr}$
- RF System: $h=2, f_2=1.3-3.1 \ \text{MHz}, V_2 \sim 160 \text{kV/turn}$
 $h=4, f_4=2.6-6.2 \ \text{MHz}, V_4 \sim 80 \ \text{kV/turn}$
- Extraction: single-turn, vertical
- Tunes: $(Q_x, Q_y)=(4.31,3.83)$ (variable)
3. ISIS Half Integer Studies

- Want to understand half integer on RCS 3D motion, fast changing parameters
 Staged study: 2D, static 3D, RCS

- Summary of 2D work so far
 Calculated coherent modes (large tune-split)
 ORBIT models: coherent, incoherent limit
 emittance growth, halo ...

Coherent Envelope Mode vs Tune Depression

Minimum Incoherent Frequency (Peak Q Depression)

RMS Emittance on Turn 100

Circulating Protons (x1E13)

RMS Emittance (pi mm mr)

Envelop 100 turns

Tune Footprint (Q_x, Q_y)

Beam Stable at Incoherent Limit
4. Experiments: Machine Configuration

- Aim to make experiment as simple as possible
 Straight forward observation of essential behaviour

- ISIS ring in Storage Ring Mode (SRM)
 RF off, main magnets on constant DC
 Inject and store 70 MeV beam (0→1.3E13 ppp)
 Constant painting ($\varepsilon_{rmsx} \approx \varepsilon_{rmsy} \approx 20\pm4\pi$ mm mr)
 Beam occupies a small fraction of acceptance
 Set constant lattice (Q_x, Q_y)=(4.30,3.63)
 Apply $2Q_y=7$ driving term (amplitude/phase)
 Ramp intensity, push toward $2Q_y=7$

- Look at
 Beam Loss
 Transverse Profiles

Coherent frequencies

$$\omega_x^2 = 4Q_{0x}^2 - 5Q_{0x}\Delta Q_{inc,x}$$
$$\omega_y^2 = 4Q_{0y}^2 - 5Q_{0x}\Delta Q_{inc,x}$$

$$\Delta Q_{inc} = \frac{r_p N}{2\pi\beta^2\gamma^3}\frac{1}{\varepsilon B}$$
5. Experiments: Diagnostics

- **Profile Monitors**
 Residual gas ionisation monitors
 Non-destructive, sensitive
 Errors: drift field, space charge
 Detailed study provided corrections
 Now refining: more detail

- **Low Intensity Chopped Beams**
 Less than 1 turn, small emittance
 Measurements of \((Q_x, Q_y)\), painting, ...

- **Intensity Toroids and Loss Monitors**
6. Experiments: Loss Measurements

- Beam loss at coherent limit
 Loss increases as approach limit
 See “brick wall” where expect

Beam Current \((1V=1E13 \ ppp)\)

Beam Loss \((\text{clipped at }> 1V!)\)

\[
\begin{align*}
\text{I}= 7.5\times 10^{12} & \quad \text{I}= 7.5\times 10^{12} \\
\text{I}= 1.0\times 10^{13} & \quad \text{I}= 1.5\times 10^{13} \\
\text{I}= 2.0\times 10^{13} & \quad \text{I}= 2.0\times 10^{13}
\end{align*}
\]

- Summary of loss measurements: Loss vs I, vs Q, vs driving term

Predicted Resonance

Measured Loss
7. ORBIT Model of ISIS

- **3D ORBIT Model of ISIS RCS**
 Detailed AG lattice, injection painting, variable Q, apertures, collimation, ...
 Good agreement with observations (D J Adams, IPAC12, THPPP088, p3942)

- **Adapted for ISIS SRM**
 Parameters set as in experiment constant Q, constant painting, driving terms, ...
 Track ~300 turns, including injection
 Output distributions, tunes, ...

- **Plots show SRM example (p_2 case)**
 Left-right: $\left(x, x', y, y'\right)$ (phi, dE) $\left(x, y\right)$
 Top-bottom: turns 14-114 (step 20)
 See later
8. ORBIT Simulation of Experiments

• Multiple runs: vary intensity
 With $\varepsilon_{rms} = 15\pm2 \ \pi \ mm \ mr$, $Q_v = 3.60$
 Predict resonance at $\sim 0.5 \pm 0.1 \times 10^{13} \ ppp$
 For each run: plot $\varepsilon_{99\%}$ on turn 299
 Clear dependence on driving term

• Single run: evolution over 300 turns
 ε_{rms} increases as expect (vertical only)
 Intensity reaches $\sim 0.5 \times 10^{13} \ ppp$ on turn 68
 Strong dependence on driving term
 Clear growth in second moment
 Frequency of 2nd moment near $2Q_y = 7$
 Expected “halo”

Particle distribution in (y,y') on turn 109
9. Experiments: Profile Measurements

- Measure profiles as approach resonance

- Identify as half integer halo?
 Control with driving term
 \[\Delta k(\theta) = k_0 \cos(2Q_y \theta + \phi) \]
 \[p_0: k_0 = 0 \]
 \[p_1: k_0 = 0.02 \text{ m}^{-2}, \phi = 0 \]
 \[p_2: k_0 = 0.02 \text{ m}^{-2}, \phi = \pi \]

- For driven resonance
 \((y, y')\) structure locked to \(\theta\)
 Rotates \(2Q_y\) times around ring

- Effects of these?
 Strength: loss
 Phase: \((y, y')\) orientation
 \(\sim\) profile is \(y\) projection
10. Compare with ORBIT simulation

- Compare ORBIT
- Same Features
- See “Hips” due to phase
- Details?

Measured profile

ORBIT profile

ORBIT \((Y,Y')\)

\[p_0 \]
\[k_0 = 0 \]

\[p_1 \]
\[k_0 = 0.02 \text{ m}^{-2} \]
\[\phi = 0 \]

\[p_2 \]
\[k_0 = 0.02 \text{ m}^{-2} \]
\[\phi = \pi \]
11. ORBIT Simulation Details

- More detail of p_2 case
 Evolution (Y,Y') in ORBIT
 Turns 29-79 (step 10)
 Intensity ramps 0.2-1.2 E13 ppp
 Pushes onto resonance ≈ single particles at $Q_y=3.5$

![Measured ORBIT (Y,Y')](image)

Typical tune footprint at resonance

![Incoherent Tunes after 39 Injected Turns](image)
• Beam Models
 Experiments presently ahead of beam model!

• Coherent model useful
 Until beam blows up ...

• Very useful model in literature
 Venturini & Gluckstern [1]
 KV, self-consistent, driven, equal tunes ...
 1D halo ~ looked at in [2] – similar behaviour

• Experiments show observable halo
 Next – try a simple non self-consistent model
 e.g. waterbag, particle-core, driven ...
 Will hopefully describe short term structure

13. Next Steps

• Results are promising, but there is much further to go!

• Reduce errors and optimise use of profile monitors
 Better models of beam and machine (beam parameter measurements)
 More detailed information from profile monitors (more modelling)

• Develop simple models
 Simplified simulation/analytical models (particle-core, WB, driving term)

• Develop experiments and link with closely related work
 Studies of ISIS working point and image effects (MOP257)
 Planning experiments with bunched, non-accelerated beams (TH01A04)
 Study of RCS mode (3D ORBIT simulations and use of ISIS Set 3Di code)
14. Summary

• Detailed observation of half integer resonance
 Measurement and manipulation of halo as predicted by simulation

• Promising results
 Now hope to improve detail and accuracy ...
15. Acknowledgements

• Many thanks to ...

ISIS Diagnostics Section
ISIS Operations

ORNL/SNS for use of ORBIT

• As always ... useful discussions with ASTeC/IB