Detection of Unidentified Falling Objects at the LHC

<u>E. Nebot</u>, T. Baer, F. Day, B. Dehning, M. Hempel, E. B. Holzer, A. Lechner, R. Schmidt, J. Wenninger, C. Zamantzas, M. Zerlauth and F. Zimmermann.

Outlook

- Introduction.
 - Beam Loss Monitoring System (BLM) overview.
 - Unidentified Falling Objects (UFO).
- UFO observations.
- Dump statistics.
- Mitigations and diagnosis.
- FLUKA simulations.
- The theoretical model.
 - The model.
 - Predictions and observations.
- Conclusions.

FR

Introduction I. The BLM system

Main goal: Avoid quenches of superconducting magnets and any damage induced by beam losses.

- 3600 ionization chambers situated at likely-loss locations.
- Signals integrated in 12 intervals (Running Sums, RS) spanning from 40µs to 83s.
- Continuous comparisons of signals (S) with a set of predefined thresholds (T). Beam aborted if S>T.
- Data sent to on-line applications for monitoring and databases for offline analysis.

September 18th 2012

HB2012

Introduction II. UFOs

- 7th of July 2010. The BLM system requested a beam dump due to beam losses on the millisecond scale.
- Since then, 48 events have produced beam dumps (operational limitation for the LHC).
- Hypothesis: Interaction of micron-size particles with the LHC beam.

September 18th 2012

HB2012

FR

Introduction III. UFO detection

- Systematic (on-line) search of below dump threshold UFOs.
- Request 2 LOCAL BLMs (within 40m and protecting same beam) with significant signals ($S > 10^{-4}$ Gy/s in RS4, 0.640 ms).
- Constrains on ratio of signals in RS2 (80 μ s) and RS3 (320 μ s) to RS1:
 - RS1/RS2 > 0.55.
 - RS3/RS2 > 0.45.

Signals in 12 RS for all BLMs stored for offline analysis:

- 2011. ~8000 UFO candidates at 3.5 TeV.
- 2012. ~ 4000 UFO candidates at 4 TeV.

UFO observations I

September 18th 2012

HB2012

E. Nebot

ERI

UFO observations II

- Same tendencies observed from $2010 \rightarrow 2012$.
- Linear increase of UFO rate with beam intensity up to a few hundred nominal bunches.
- Saturation effect for larger intensities.

HB2012

FR

UFO observations III

Clear conditioning effect. UFO rate decreases over time (ARC UFOs only)

September 18th 2012

HB2012

ERI

UFO observations IV

Dependence on beam emittance (calculated from luminosity at the beginning of the fill)

September 18th 2012

HB2012

E. Nebot

FR

UFO observations V

 Dependence of UFO rate on beam emittance ε calculated from Beam Synchrotron Radiation Telescope at the moment of UFO).

$$Rate(\epsilon) = \frac{N_{UFOs}(\epsilon_L < \epsilon < \epsilon_H)}{\Delta t(\epsilon_L < \epsilon < \epsilon_H)}$$

 Slightly stronger dependence (increasing behaviour) observed with horizontal emittance.

• Particle reaches the beam due to gravity.

Diagnosis improvement

• Location of new BLMs. Arc cell (19R3) and around MKI magnets

- UFO event detection triggers the UFO capture buffer:
 Improvement on time resolution. Signals for all 3600 BLMs saved for ~1000 truns every 80 μs
 - Diamond detectors. Bunch by bunch diagnosisi4 M16Hempel7,54004203.

FLUKA simulations

FLUKA simulations

- Good agreement between observation and simulation
- Estimation of peak energy density on MB
- Confirmation of UFOs originating in multiple location
- BLM re-arrangement under investigation

The theoretical model

Assumes particle with mass A and (variable) charge Q >> 1. Particle influenced by four forces:

- Gravity.
- Beam electromagnetic.
- Beam image.
- Magnetic (negligible due to particle slow motion)

Model predictions:

- Particle trajectory.
- Charge rate.
- Beam loss rate.

Predictions and observations

According to the model, the observed asymmetries contain information about the particle (mass). Qualitative agreement between temporal loss rate predicted and measured. Comparable loss duration

HB2012

FRN

Predictions and observations II

According to model the loss duration get shorter with intensity

Observed loss duration

Predicted loss duration

September 18th 2012

HB2012

E. Nebot

Conclusions

- Unforeseen beam losses on the millisecond time scale have been observed in the LHC.
- Cause: Unidentified Falling Objects, dust particles of sizes 1-100 μ m interacting with the LHC beam.
- Multiple observations that allow us to estimate the expected number of UFOs/dumps.
- Some mitigations and diagnosis improvements have been/will be needed.
- UFO-like events have been simulated with FLUKA finding a good agreement with observation.
- Theoretical model predicts several of the observed features.

Thank you for your attention.

BLM signal and dust

BLM signal and dust

dust contamination ••• measured in SMI2 •••

most of the dust consists of silica; deviations at large dust sizes are due to human interventions and could be steel, silver, Ti, etc

measured UFO strength distribution

measured dust distribution consistent with observed UFO strength distribution

September 18th 2012

HB2012

September 18th 2012

HB2012