Injection Design for Fermilab Project X

David Johnson, Z. Tang, C.Y.Tan HB2012 Workshop Beijing, China September 18, 2010

Outline

- Concept Evolution
- Reference Design
- Staged Approach
- Booster Injection
 - Current Conditions
 - 1 GeV injection
 - Configurations
 - Energy Matching
 - Transverse painting
 - Foil issues
- Summary

Concept Evolution

"a Little History"

- Project X grew out of the initial Proton Driver proposal... circa 2005
- Three Project X configurations have been developed, in response to limitations identified at each step:
 - Initial Configuration-1 (IC-1) circa 2008
 - 8 GeV pulsed linac + Recycler/MI
 - Fully capable of supporting neutrino mission
 - Limited capabilities for rare processes
 - Initial Configuration-2 (IC-2) circa 2010
 - 2 GeV CW linac + 2-8 GeV RCS + Recycler/MI
 - Fully capable of supporting neutrino mission
 - 2 GeV too low for rare processes (Kaons)
 - Ineffective platform for Neutrino Factory or Muon Collider
 - Reference Design circa 2011
 - 3 GeV CW linac + 3-8 pulsed linac + Recycler/MI
 - Ameliorates above deficiencies

Project X A Staged Approach Circa Spring 2012

- In response to the DOE's request to investigate how we could stage Project X, a three phase approach has been proposed. This will gradually reach the goals of the Reference Design at the end of stage 3.
 - Stage 1: Construct a 1 GeV superconducting CW linac to inject into an upgraded Booster RCS.
 - Stage 2: Add a 1 -3 GeV superconducting CW linac to provide up to 3 MW for a 3 GeV Experimental program
 - Stage 3: Add a 3-8 GeV superconducting 10 Hz pulsed linac to accumulate up to 1.5E14 protons and then use single turn injection into the Main Injector. This will provide up to 50-200 kW for an 8 GeV experimental program and > 2 MW for a 120 GeV Neutrino program.
 - A 4th Stage referred to "Beyond the Reference Design would be a 8 GeV power upgrade to 4 MW
- The PXIE program is the front-end technology development and verification for the first stage of Project X.

See: N. Solyak talk: WE03B03 PXIE at FNAL

Project X Staged Approach kaon **1 GeV Experimental** muon **3 GeV Experimental** nuclear **1 MW** CW RFQ 1 GeV CW H-Chopper 18 kW 3 MW 2 kW 1-3 GeV CW 400 MeV pulsed RFQ **Booster**

Current Booster

- 15 Hz resonant magnet system 24 FD0DF cell
- Inject 1-10 turns @2.2 us/turn
- 5E12 @7.5 Hz (upgrade to 15Hz now underway
- 2.4 kW injected beam power
- No phase space painting
- >380 ug/cm² foil -> 99.9% stripping efficiency
- New 3 magnet chicane (2005)
- No injection absorber
- Losses due to H0 & H- -> a few R on contact (2nd magnet)

See F. Garcia's talk this afternoon WG-D (TU03C02) on the current improvement plan.

Croiset X 1 GeV Booster Injection

- Proton Intensity requirement 7.5e13 out of MI @120 GeV
- Booster provides12 pulses of 6.5E12/15Hz per MI cycle
- Assuming 95% efficiency inject 7E12/15Hz into Booster
 - If beam run on all cycles 18 kW injected and 125 kW extracted
- LINAC 2.1MeV CW RFQ creates 162.5 MHz bunch train
- Bunch-by-bunch chopper in the MEBT
- Average current 1 mA (over 1 us) 3.8E7 H-/bunch (assuming all bunches are filled
- HE end of linac 650 MHz superconducting elliptical cavities
 - dE/E 0.025% (100% energy spread 0.25 MeV bunch length 3.8 ps
 - Transverse rms normalized emittance 0.25 p and 0.3 p-mm-mr (H&V)

Croiset X Modifications to Lattice

- Injection straight 6m between gradient magnets (no room to add an injection absorber -> increase in injection power X8)
 - Reduce "D" gradient magnets on either side by 25% (keep bc same)
 - Opens up straight by 12% (i.e. 0.72m)
 - Introduces small beta and dispersion error (<5%) that can easily be corrected
- Present chicane dipole design field 2.8 kG at 15 kA
 - Capable of 30 mr at 1 GeV
 - Lorentz stripping at 1 GeV and 2.8 kG -> loss rate ~10⁻⁸/m
 - Could utilize existing magnets (with modifications to cross over buss)

Project X Injection configuration

- Three or four bump chicane
- Horizontal or vertical injection .
- Want to limit field in injection magnets that see H-•

Croiset X Micro Bunch Placement

- *Booster harmonic number is 84 *At 1 GeV f_{RF} =46.46 MHz *Ratio R = f_{bunch}/f_{RF} = 3.49
 *Get no phase slippage between buckets on single turn *Alternate bucket filled with 1 or 2 bunches
 •On multiple turns bunch injected at same phase in Booster bucket (no good- not uniform distribution)
 *Need to program a turn-by-turn phase shift -> longitudinal painting in phase
- requires 2 turns to get 3 bunches/bucket
- Increase number of turns or increase bunch intensity
- Even harmonic gives uneven bucket filling pattern
- Change harmonic number to odd
 - Cf 83 in Booster -> 581 in MI/RR

Croisst X Momentum Acceptance 🛟

- Booster momentum acceptance has been measured to be +/- 0.15-0.2 % -> |0.4%|
- At 1 GeV revolution period 1.8 us require ~627 turn injection ~1.12 ms injection time
- 48 resonant RLC cells in series powered by 4 supplies sinusoidal ramp profile
- Since 1 GeV injection time >> 400 MeV injection time we have several Options

- 춖
- Preliminary ESME simulations with a stationary bucket with fundamental harmonic [150 kV] + 2nd [75kV] and +3rd [50 kV]
- Inject for 1 ms then ramp RF to 1MV and harmonics to zero in 0.1ms
- Injected +/-180°, +/-90° and +/-60° -> 30-40% survived for +/180° inj.
- %survival to transition for +/-60° : 1st 84% 1st+2nd 97% 1st+3rd 94%
- Bunch dE ~ +/- 4 MeV
- linac bunch 0.25 MeV & 0.14 $^{\circ}$ -> paint in both energy and phase

Project X Linac Booster Energy Match

OPTION 1: Modify the main magnet power supply system to create an injection front porch

- Preliminary simulations on 1 cell show feasibility
- Need to model entire ring
- Synchronous micro-bunch transfer into a stationary bucket

OPTION 2: Start injection 550 us before inject through BMIN and end inj 550 us after BMIN on the ramp (inject on the down/up ramp)

- Synchronous micro-bunch transfer
- Use stationary bucket and utilize energy swing to paint in energy/phase \geq (requires orbit compensation due to dispersion)
- Linac energy follow Booster energy profile -> Accelerating bucket to \succ keep orbit centered -> reduced longitudinal acceptance

Project X Transverse painting

- Final 95% normalized painted emittance $\varepsilon_{\rm R}$ =20 π -mm-mr ۲
- Average injected 95% normalized emittance ε_1 = 1.7 π -mm-mr ۲
- Ratio $\varepsilon_{\rm I}$ / $\varepsilon_{\rm R}$ = 0.085 (compared to SNS 0.01 and JPRAC 0.0185) ۲
- Painting options: ٠
 - Painting both dimensions in ring SNS
 - Painting one dimension and steer in the other JPARC
 - Correlated or anti-correlated
- Choice of painting scheme and bump motion important in determining ۲ number of hits.
- Horizontal beam size factor 2 smaller than vertical so the closed orbit is ۲ moved off slower leading to a greater number of foil hits.

Lattice Mismatch

J B-Wang, C. Prior SNS/BNL Note 080

Optimal positioning/orientation of injected beam in circulating beam ellipse.

 $\frac{\alpha_L}{\beta_L} = \frac{\alpha_R}{\beta_R} = -\frac{X'_C - X'_o}{X_C - X_o}$ In our case $\alpha \sim 0$ for both ring and line (upright ellipse) $\frac{\beta_L}{\beta_R} \ge \left(\frac{\varepsilon_L}{\varepsilon_R}\right)^{1/3}$ Injected beam proper aspect ratio (minimize hits) Determines values for transport line lattice functions

Booster Lattice at Foil

β _x	4.88m		
α _x	0.049		
βγ	18.52m		
αγ	0.011		
D _x	1.73		
D'x	-0.003		

Paint x & y

Foil heating

- With no painting the average number of hits per particle on the foil is just $N_{\rm t}/2$
 - For $N_p = 7.4E12/cycle$ and $N_t \approx 600$ Total foil hits $\approx 2.2E15$
- With painting and the foil the same size as the injected beam and assuming proper matching conditions the minimum number of hits can be estimated by $1 \sqrt{\varepsilon_L}^{4/3}$
- estimated by • For parameters here: $h_{min} \sim 6$ $h_{min} = \frac{1}{4} N_t \left(\frac{\varepsilon_L}{\varepsilon_R}\right)^{T}$ D. Raparia
- Booster circ. σx = 3mm and σy = 6mm , linac beam σx = .5 mm σy =1 mm
- Assume:
 - Hit distribution similar to circulating beam distribution
 - Use # hits/particle as 425 to give a total of 3.15E15 hits/ms (way over estimate)
 - Maximum hit density in the central sq. mm is ~10¹⁴ /mm²/ms
 - Ignore cooling from delta electrons

Project X Foil Heating ANSYS Model

(Zhijing Tang FNAL)

$$h\rho \propto \frac{dT}{dt} = h\nabla \langle \nabla T = 2s \varepsilon \langle ^{-4} - T_0^{-4} \neq \rho uhf \langle g \rangle \langle \\$$
Assume :
total hit on foil 3.15E15 in 1 ms (~1E14 in central mm²)
 $\sigma x = 3mm \sigma y = 6mm gaussian$
15 Hz rep rate
dE/dx = 1.94 MeV-cm²/g
Heating power 320W
Foil: $\rho = 2.2 \text{ g/cm}^2$
 $k = 13.7 \text{ W/cm-K}$
 $\varepsilon = 0.8$
 $h = 1.5 \text{ um}$
radius = 5 cm
circ. Fixed @ 300K
two surface radiate
include the enveloped envel

include thermal conduction

Stationary Foil, 319 W beam time

Summary

- We are beginning to look at siting issues for the linac and where we will inject into the Booster. (There are many ideas that need to be flushed out)
- It looks feasible for injection at 1 GeV (no show stoppers identified yet just \$\$) Need to start narrowing down options.
- Much more work needs to be done
 - Power supply simulations-
 - Can we make an injection front porch (if so how much \$\$ and is it needed)?
 - Can we use chicane dipoles/supplies for painting as well?
 - Transverse painting simulations (for several injection configurations)
 - Is there room for off-plane painting magnets in straight section or are we constrained to paint n' steer ?
 - Longitudinal simulations to understand options
 - Magnet issues and designs
 - New gradient magnet, chicane dipoles, septum, etc.
 - Injection absorber design

Thank you for your attention Questions ?

Example Power Staging Plan for the Research Program

		Stage-1:	Stage-2:	Stage-3:	Stage-4:
		1 GeV CW Linac driving	Upgrade to 3 GeV	Project X RDR	Beyond RDR:
		Booster & Muon, n/edm	CW Linac		8 GeV power upgrade to
Program:	Onset of NOvA	programs			4MW
	operations in 2013				
MI neutrinos	470-700 kW**	515-1200 kW**	1200 kW	2450 kW	2450-4000 kW
8 GeV Neutrinos	15 kW + 0-50 kW**	0-42 kW* + 0-90 kW**	0-84 kW*	0-172 kW*	3000 kW
8 GeV Muon program	20 kW	0-20 kW*	0-20 kW*	0-172 kW*	1000 kW
e.g, (g-2), Mu2e-1					
1-3 GeV Muon		80 kW	1000 kW	1000 kW	1000 kW
program, e.g. Mu2e-2					
Kaon Program	0-30 kW**	0-75 kW**	1100 kW	1870 kW	1870 kW
	(<30% df from MI)	(<45% df from MI)			
Nuclear edm ISOL	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW
program					
Ultra-cold neutron	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW
program					
Nuclear technology	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW
applications					
# Programs:	4	8	8	8	8
				U U	
Total max nower:	725 L/M	2222 1/1/	4004 1/14	6402 1/14	449701/14
rotar max power.	1 33 KVV	ZZZZ KVV	4204 KVV	0492 KVV	

* Operating point in range depends on MI energy for neutrinos.

** Operating point in range is depends on MI injector slow-spill duty factor (df) for kaon program.