Beam Loss due to Foil Scattering in the SNS Accumulator Ring

HB2012, Beijing September 18, 2012

J. Holmes and M. Plum

SNS Accumulator Ring (C=248 m)

2 for the U.S. Department of Energy

Presentation name

Downstream from Injection

The Calculation

- Use ORBIT Code with full SNS ring lattice and apertures
- Inject distribution of macroparticles and track for 1 turn
 - Symplectic single particle tracking
 - Ignore collective effects
 - Assume apertures absorb all impacting particles
- Tabulate fraction and distribution of beam loss for different (carbon) foil scattering models and thicknesses
 - Two foil thicknesses:
 - 390 µg/cm² with 2×10⁸ macroparticles
 - 18000 µg/cm² with 10⁷ macroparticles
 - Three scattering models
 - No scattering
 - Small angle Coulomb scattering only
 - Full scattering model: Small angle Coulomb scattering + Rutherford scattering + nuclear elastic scattering + nuclear inelastic scattering

Compare with experimental activation and loss distributions

4 Managed by UT-Battelle for the U.S. Department of Energ National Laboratory

Presentation_name

Injection Parameters

- Injected beam energy = 925 MeV
- Injected beam use linac distribution
 - Gaussian distribution
 - RMS emittances: $\varepsilon_x = \varepsilon_y = 0.221$ mm-mradian
 - Twiss parameters at foil:

• $\beta_x = 10.221 \text{ m}$, $\alpha_x = 0.065$, $\beta_y = 10.763 \text{ m}$, $\alpha_y = 0.062$

- Assume foil is sufficiently wide and tall that all injected beam strikes foil
 - Actual foil strike distribution differs from linac distribution, due to circulating beam
 - We ignore this difference, which is at most a few millimeters and a fraction of a milliradian

Beam-Foil Interaction Model Options

• Options:

- 1) No interaction
- 2) Small angle Coulomb scattering only (ACCSIM)
- 3) Full foil scattering model implements ORBIT collimation model (Cousineau PhD Thesis)
 - Small angle Coulomb scattering (Jackson textbook): this differs from option 2 model
 - Rutherford Scattering (Jackson textbook)
 - Nuclear elastic scattering (Cousineau PhD Thesis adapted K2 and MCNPX data)
 - Nuclear inelastic scattering (Cousineau PhD Thesis adapted K2 and MCNPX data)

1st Turn Beam Orbit Depends on Time

for the U.S. Department of Energy

Fractional Loss Results (×10⁻⁷)

Case	Initial Bump		Final Bump	
	Nuclear Elastic	Total	Nuclear Elastic	Total
390/18000 μg/cm²:				
No scattering	0/0	0/0	0/0	0/0
Small angle Coulomb	0/0	36.6/1419	0/0	33.9/1342
Full scattering model	25.4/1173	69.8/3243	23.1/1089	61.3/3026

- All the loss mechanisms have low probability
- Total losses should scale linearly with the foil thickness
- Normalize losses: divide losses by foil thickness

Fractional Losses (×10⁻⁷) Normalized to 1000 µg/cm² Foil Thickness

Case	Initial Bump		Final Bump	
	Nuclear Elastic	Total	Nuclear Elastic	Total
390/18000 μg/cm²:				
No scattering	0/0	0/0	0/0	0/0
Small angle Coulomb	0/0	93.8/78.8	0/0	86.9/74.6
Full scattering model	65.1/65.2	179.0/180.2	59.2/60.5	157.2/168.1

- Divided by 0.39 for the 390 $\mu\text{g}/\text{cm}^2$ cases and by 18.0 for the 18000 $\mu\text{g}/\text{cm}^2$ cases
- Good agreement, within statistical error
- Confirms linear dependence of the losses on foil thickness

Summary of Results

- Results:
 - 1) Slightly higher losses with initial bump than final bump counterintuitive, but not significantly different
 - 2) No losses when foil scattering is neglected observed losses caused by foil scattering
 - 3) Small angle Coulomb scattering responsible for slightly less than half of the total losses
 - 4) Nuclear inelastic scattering responsible for slightly more than one third of the total losses
 - 5) Remaining losses presumably due to Rutherford scattering and nuclear elastic scattering
- Fractional losses are ~1.8×10⁻⁸ τ , where τ is the foil thickness in μ g/cm², during the first turn following foil scattering
- Of these small angle Coulomb scattering contributes ~0.8×10⁻⁸τ and ~0.6×10⁻⁸τ come from nuclear inelastic processes

Loss Distribution Around Ring

Transverse Distribution of Losses

Presentation name

CAK RIDGE National Laboratory

Observations

- Full foil scattering model, activations, and BLMs:
 - Most activity within the 20 meters after the foil
 - Losses further downstream:
 - Collimation section (~50-60 m in the plot)
 - Extraction section (~130 m)
 - Beginning of the injection chicane (~240 m).
- Full scattering model, activation measurements, and BLM readings very similar
- Inelastic nuclear scattering gives very first peak in ORBIT tabulation
- Nuclear losses and Rutherford scattering mostly in first 7 meters
- Most losses further downstream due to small angle Coulomb scattering
- Injection region losses concentrated toward outside (beam left) and above center, consistent with injection painting
- Collimation region losses are stronger below center
- We now attempt a more quantitative analysis of foil scattering and BLM results

13 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Compare Calculated and BLM Losses

- Convert losses to the same units
- BLMs were previously calibrated using controlled beam spills
- Calibration allows a rough estimation of fractional beam loss. The above BLM plot was taken for a beam with
 - 18 µCoulombs
 - 910 MeV
- Computational results can also be used to predict the total beam loss and loss distribution due to foil scattering for any assumed number of foil hits per proton. We assume
 - 390 μg/cm²
 - 6 foil hits/particle

Results

- BLM readings -> total fractional beam loss = 1.9×10⁻⁴, with most occurring not far downstream of the foil
- ORBIT foil model assuming 6 foil hits -> fractional beam loss due to foil scattering = 4.3×10⁻⁵, or about 23% of the BLM prediction
- ORBIT foil model would require 26.5 foil hits to 1.9×10⁻⁴
 - This is almost certainly too many compared with the actual number, which is probably no higher than 10 foil hits per proton
- 10 foil hits per proton -> total fractional beam loss = 7.2×10⁻⁵
- Both the number foil hits and BLM coefficients are only roughly known. Independent estimates of fractional ring loss are ~1×10⁻⁴, between BLM and ORBIT results

Discussion

- Uncertainties in the comparison:
 - BLM calibration coefficients are not precisely known.
 - Difficult to control the exact locations for intentional beam spills.
 - Variations in the actual and intended locations can affect the BLM readings and, consequently, the calibration.
 - Number of foil hits per proton is uncertain.
 - Sensitive to the actual injection painting.
 - Although optimized ORBIT simulations predict about 6 foil hits/proton over the course of injection, the actual number could be higher.
 - Finally, about 5% of the injected beam either misses the primary stripper foil or is incompletely stripped.
 - Secondary stripper foil of thickness 1500-2000 $\mu g/cm^2$ these particles before they go to the injection dump.
 - ORBIT model predicts associated losses in the range 1.3-1.8×10⁻⁶, a small contribution.
- Given the uncertainties, the level of agreement between ORBIT and the experiment for the fraction and distribution of beam loss is reasonable.

Next Steps

- Further studies will be pursued to enhance the understanding of beam loss in the SNS ring.
- Carry out ORBIT simulations of accumulation with variations on loss models and beam dynamics.
- Another future direction that we have begun to pursue is to model the injection region using the code G4beamline:
 - Physics models from the Geant4 code
 - Plus accelerator beam line elements.
 - With its sophisticated interaction models, including secondary particles, G4beamline will provide further elucidation of the contribution of foil scattering to ring losses.

