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Outline

� Over 40 years of work on this topic:

• Injection current limitation: Vertical space charge.
• Extraction current limitation: Longitudinal space charge.

� Space charge in the TRIUMF cyclotron – revisited:

• Development of a 3D simulation tool including effect of
neighboring turns using periodic boundary conditions in the
radial direction.
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Vertical space charge

Incoherent tune shift is a well-known effect in synchrotron theory:

∆(ν2
z)SC = −2

π

NRrp
β2

[
1

b(a+ b)
+
ε1
h2

]
,

with N : number of particles,
R: orbit radius,
rp: classical proton radius (1.54×10−18 m),
β: ratio of the particle velocity to the speed of light,
a and b: horizontal and vertical beam size, resp.
h: metal chamber half-height,
ε1: the Laslett image coefficient, ' 0.2 for parallel plates.

In cyclotrons, since the vertical tune is generally much smaller than
the horizontal tune, the current limit is reached when the vertical
focusing nearly vanishes.
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Vertical space charge

Ways to push the space charge limit further away:

� ∝ 1
β2

: increase the injection energy.

This is why high power cyclotrons use external ion sources.
Drawback: increases beam power lost at injection.

� Increase the vertical focusing.
Vertical focusing in cyclotrons comes manly from the azimuthal field variations
(i.e. edge focusing).
Drawback: machine less compact. Necessarily the injection orbit radius must be
large compare to the magnetic gap.
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Current limitation from transverse space
charge

No hard limit
but a price to pay
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Longitudinal-radial effects

�

v

�
v• Intuitive effect of longitudinal

space charge forces: particles at
the head of the bunch gain energy,
particles at the tail lose energy.

• The absence of longitudinal focusing leads to the accumulation the
energy spread (M.M. Gordon, Int. Cyclotron Conf. 1969).

• Similar to the case of a synchrotron at transition.

• Because of the non-zero dispersion: longitudinally dependent radial
motion, reducing turn separation.
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http://epaper.kek.jp/c69/papers/cyc69d04.pdf


If the energy gain accumulates

From Gauss’s law, the space charge potential of a cylindrical beam in
a cylindrical pipe is:

V =
λ

4πε0
(1 + 2 log(b/a)),

where a is the beam radius, b is the beam pipe, and λ lambda is
charge per unit length.

Since the electric field is the gradient of the potential, the longitudinal
space charge force is proportional to the derivative of λ.
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If the energy gain accumulates

Generalized for the non-cylindrical geometry, the accumulated energy
spread is given by “Joho formula” (see W. Joho, Int. Cyclotron Conf.
1981):

∆USC = (2800 Ω)Î
n2

βmax
.

Since the energy gain per turn V = ∆E/n must exceed this, we find
that the current capability is proportional to the cube of the energy
gain per turn V 3.
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If the energy gain accumulates

Fig. 1: From: W. Joho, PSI.
(link to the talk it is taken from)

History of PSI show a
good agreement with this
scaling law, even though
the details of the space
charge interaction do not
match the original Joho
analysis.

Sept. 2012 – T. Planche, TRIUMF 8

http://gfa.web.psi.ch/publications/presentations/WernerJoho/Current_Limit.pdf


Longitudinal-radial effects

�

v

�
v(1) No phase stability: energy

gain accumulates.

(2) Because of the non-zero
dispersion: longitudinally
dependent radial motion.

But this is an incomplete
picture!
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Longitudinal-radial effects

�

v
�

�

�

v

v v
(1) No phase stability: energy
gain accumulates.

(2) Because of the non-zero
dispersion: longitudinally
dependent radial motion.

(3) Simplecticity: it was realized
during the late 1980’s that
the longitudinally dependent
radial motion comes with and
azimuthally dependent radial
motion.

Sept. 2012 – T. Planche, TRIUMF 10



Longitudinal-radial effects

Fig. 2: PICN Simulation results
(PSI injector II). From: S. Adam
Int. Cyclotron Conf. 1995.

(1) No phase stability: energy
gain accumulates.

(2) Because of the non-zero
dispersion: longitudinally
dependent radial motion.

(3) Simplecticity: it was realized
during the late 1980’s that the
longitudinally dependent radial
motion comes with and azimuthaly
dependent radial motion.
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Stationary distribution

Important landmark: Kleeven Part. Acc, 1989, vol 24.: distribution
which are cylindricaly symmetric are stationary.

Fig. 3: Arrows show the particle velocity, in the beam frame. From
A.J. Cerfon (NYU), J.P. Freidberg, F.I. Parra (MIT), after numerical
resolution of the Vlasov equation (2012).
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http://cdsweb.cern.ch/record/1053515/files/p187.pdf?version=1


Fragmentation of long bunches

Long bunches tend to break up into several disks:

Fig. 4: Simulation results obtained with CYCO – a 3D PIC tracking
code. From Pozdeyev, Rodriguez, Marti, Phys. Rev. ST AB 12
(2009).
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http://prst-ab.aps.org/abstract/PRSTAB/v12/i5/e054202
http://prst-ab.aps.org/abstract/PRSTAB/v12/i5/e054202


Fragmentation of long bunches

Experimental evidence obtained with SIR (MSU):

Fig. 5: From E. Pozdeyev, Phys. Rev. ST AB 12 (2009).
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http://prst-ab.aps.org/abstract/PRSTAB/v12/i5/e054202


Effect of neighboring turns

Simulation of neighboring turns (multibunch tracking) carried out at
PSI using the 3D particle in cell (PIC) parallel code OPAL.

Fig. 6: Simulation results from OPAL-CYCL showing a bunch after
130 turns in the PSI ring cyclotron. Figure from: J.J. Yang, A.
Adelmann et al. Phys. Rev. ST AB 13 (2010).
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http://prst-ab.aps.org/abstract/PRSTAB/v13/i6/e064201
http://prst-ab.aps.org/abstract/PRSTAB/v13/i6/e064201


Longitudinal space charge

� For short bunches: we have got a stationary charge distribution.
How much current you can extract depends only on how well
you can match the charge distribution to the stationary one at
injection!

� Is this distribution still stationary in the presence of neighboring
turns, or for long bunches? Entering here a “gray zone” where
things are not yet fully understood.

� The ultimate current limit of cyclotrons has not yet been found!
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Space charge in the TRIUMF cyclotron –
revisited.

� TRIUMF 500 MeV H− cyclotron : no turn separation is required for
extraction.

� Phase acceptance of about 60◦.

� Bunches are very long, and have a very large energy spread
between the head and the tail of a bunch.

� Solving Poisson equation in a PIC code over such a large volume
would require a significant computation time.
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Radial periodicity

If one makes the assumption that the beam shape evolves slowly
compared to the turn to turn time scale, one can significantly reduce
the computation time by using periodic boundary conditions in the
radial direction. This idea was originally proposed by Pozdeyev as a
possible way to improve his code CYCO.

Turn separation
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Radial periodicity

Turn separationX

Y
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Algorithm

x

(radial direction)

z (vertical direction)

symmetry 

boundary

condition

metallic (=mirror symmetry)

boundary condition

turn separation

(=h
x
)

vacuum 

chamber

height

(=hg)
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Algorithm

For each of these slices, the charge distribution can now be
expressed as a sum of Fourier harmonics:

σ(x, z) =
∑
lm

σlm exp(iωlx) cos(ωmz),

with ωl = 2π
l

hx
, and ωm = 2π

m

2hg
.

Let’s assume that the potential produced by the (l,m)–th harmonic
can be written in the form:

φlm(x, z, y) = exp(iωlx) cos(ωmz) · flm(y) + const.
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Algorithm

Injecting this potential into Laplace equation leads for the (l,m)–th
harmonic to:

d2flm
dy2

−
(
ω2
l + ω2

m

)
flm = 0.

The general solution of this equation can be written as:

flm = C1 exp(ωlmy) + C2 exp(−ωlmy),

with C1 and C2 two real numbers, and ωlm =
√
ω2
l + ω2

m.

For the potential to be bounded:

flm = Clm exp(−ωlm|y|).
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Algorithm

To find the value of the constant Clm, let’s calculate the electric
potential using the Coulomb law at x = y = z = 0 (ωm 6= 0):

φlm(0, 0, 0) = Clm

=
∫∫ +∞

−∞

σlm exp(iωlx) cos(ωmz)√
x2 + z2

dxdz = 2π
σlm
ωlm

.
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Algorithm

To sum up:

σ(x, z) FFT−→ σlm

×
2π
ωlm

e−ωlm|y|

−−−−−−→ φlm
FFT−1

−→ φ(x, z)
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Thanks!

Thank you for your attention!
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