Beam Induced Fluorescence

Profile Monitoring for Targets and Transport

- T. Dandl, T. Heindl, A. Ulrich, Physik Department TUM
- J. Egberts, J. Marroncle, T. Papaevangelou, CEA Saclay

C. Andre, <u>F. Becker</u>, C. Dorn, P. Forck, R. Haseitl, B. Walasek-Hoehne, GSI

09/20/2012 GSI BI Department

HB2012

Outline

- Motivation & Introduction
 - Overview of common profile monitors
 - Benefit and principle of gas based profile measurement

- Physics Results of Research
 - Comparison of BIF and IPM
 - Imaging spectroscopy in particular at high p
 - Issues for BIF imaging at high p
 - Reliable work around

Summary - Outlook

Common Profile Monitors for FAIR?

Device Name	PRO	CON
Scintillator Screen	2D image	Stability, accuracy, complex physics
OTR Screen	2D image	Scales with $q^2 \beta^2$
Wire Scanner	Sensitivity	Mechanical challenge, damage, thermionic e
SEM Grid	Sensitivity	Resolution, damage, thermionic e
Synchrotron Light	2D image	Needs magnetic field and relativistic particle
Laser Wire	2D image	Photon detachment works for H ⁻ ions
Gas Based Systems	Work @ FAIR conditions	Scales with $\sim q^2/\beta^2$

- N₂-dominated for $p \ge 10^{-8}$ mbar, H₂-dominated for lower p
- Atomic collisions drive $-dE/dx \rightarrow$ electronic stopping
- Processes to be observed: ionization and fluorescence...

- N₂-dominated for $p \ge 10^{-8}$ mbar, H₂-dominated for lower p
- Atomic collisions drive $-dE/dx \rightarrow electronic$ stopping
- Processes to be observed: ionization and fluorescence...

IPM and BIF Monitor

IPM and BIF Monitor

IPM and BIF Monitor

BIF-IPM Comparison

- BIF and IPM mounted to observer the same plane
- BIF monitor as ICCD setup
- IPM with electrical readout on remote motor drive
- Chamber was blackened and connected to a gas dosing system
- Nitrogen and rare gases (high purity) were applied against constant pump flow

[courtesy of J. Egberts (CEA-Saclay)]

BIF-IPM Comparison 10⁻⁵ mbar

- Profile data recorded for same spatial regions and matched statistical increments
- 2nd statistical moment was obtained in presented range
- Very good agreement of all beam profiles @ 10⁻⁵ mbar and the applied gases

BIF-IPM Comparison for rising p

- Profile data recorded for same spatial regions and matched statistical increments
- 2nd statistical moment was obtained in presented range
- Very good agreement of all beam profiles @ 10⁻⁵ mbar and the applied gases
- Drastic discrepancy for rising pressure in He and other gases

For high pressure application a systematic study was mandatory

Studies in Atmospheric Pressure

GSI

[A. Ulrich - habilitation 1998]

- cross section ratio e⁻/HI-excitation decreases with degree of ionization
- Therefore profile reading in ionized gases should have higher accuracy

[D. Varentsov et al. CPP-J 2008]

- BIF works for $p \ge 50$ mbar
- Only ArII lines @ 458 nm provide correct profile reading

Experimental Setup MLL Garching

A: Ti-window 1.1 mg/cm² | B,C: repeller plates | X: optical center

Imaging Spectrograph - Setup

Imaging Spectrograph with ICCD

- Technique allows to record fluorescence-images with spectral and spatial information (profiles and spectra)
- Chromatically corrected quartz-optics (300 800 nm)

Intensity **&** spectral position of transitions \rightarrow profile-width

- Spectral response (semi-log)
- Observed spectra for minimal and maximal pressures
- Drastic change in all spectra
- Nitrogen impurities observable in all rare gas species
- Hydroxide (OH*) in Argon
- Nitrogen changes from ionic N_2^+ to neutral transitions N_2

AP processes change completely

Beam Profiles in Various Gases

- Beam profiles for full p-sweep without spectral line selection
- Nitrogen looks most stable, but all gases falsify profiles
- Core region is less affected, shoulders appear ≥10⁻³ mbar
- Smallest profiles were observed for the highest pressure setting

Beam Profiles in Various Gases

- Beam profiles for full p-sweep without spectral line selection
- Nitrogen looks most stable, but all gases falsify profiles
- Core region is less affected, shoulders appear ≥10⁻³ mbar
- Smallest profiles were observed for the highest pressure setting
- 2nd statistical moments show profile hump for intermediate p

How can unwanted excitation mechanisms be excluded?

Mean Free Path – Spectral Selection

- For small MFP spontaneous deexcitation replaced by collisional
- Secondary electron halo excites transitions with different CS

Mean Free Path – Spectral Selection

- For small MFP spontaneous deexcitation replaced by collisional
- Secondary electron halo excites transitions with different CS
- Region of interest to observe profiles of single transitions (8nm spectral acceptance)

Transition Selective Profile Analysis N₂

- Spectral acceptance (ROI) 8 nm to select transitions separately
- Profiles of neutral transition N₂ show in- and decreasing halo (one tick is 200 µm)
- Profiles of ionic transition N₂⁺ unchanged from 10⁻³ to 30 mbar
- Fluorescence light in rare gases distributed among several lines but similar tendency is observed

vertical beam profile [mm]

Conclusion

- Online profile instrumentation at FAIR:
 - will be gas based detectors like IPM and BIF monitor
- Results of research:
 - BIF and IPM profiles agree very well for $p \le 10^{-4}$ mbar
 - BIF spectra and profiles change drastically for increasing p
 - Observed profile hump shows the full image acc. former studies
 - 2nd electron halo explains profile halo in neutral transitions
 - Spectral selection of ionic transitions avoids distortions
- Successful implementation of BIF-monitors:
 - In the energy-range of 7,5 AkeV 450 AGeV (former studies)
 - Now we showed application for mbar pressures and beyond
 - BIF monitors and IPMs cover FAIR requirements

Decreasing Kr-Pressure 1000 – 1 mbar 🛛 🖬 🖬 🔳

Thank you for your attention! ③