High Intensity Operation and Control of Beam Losses in a Cyclotron based Accelerator

> M.Seidel J.Grillenberger, A.C.Mezger for the PSI Accelerator Team

Accelerator Facilities at PSI

Neutron Source and Instruments

p-Therapie 250MeV, <1μA

central controlroom

> Swiss Light Source 2.4GeV, 400mA

High Intensity Proton Accelerator 0.59GeV, 2.2mA

Barrisso de

XFEL Injector 250 MeV

Outline

- overview on accelerator and it's performance
 - [facility, achieved intensity]
- cyclotrons for high intensity beams

[separation scaling with turn number, off-center injection, space charge scaling]

losses and resulting activation

[measured loss statistics, activated components, service personnel dose]

summary

Overview PSI Facility

PSI Ring - a sector cyclotron

- edge+sector focusing, i.e. spiral magnet boundaries (angle ξ), azimuthally varying B-field (flutter F) $Q_y^2 \approx - R/B dB/dR + F (1+2\cdot tan^2(\xi))$
- **modular layout** (spiral shaped sector magnets, box resonators)
- electrostatic elements for extraction / external injection
- radially wide vacuum chamber; inflatable seals
- strength: CW acceleration; high
 extraction efficiency possible: 99.98%
 = 1 2.10⁻⁴
- limitation: **kin.Energy** ≤ **1GeV**, because of relativistic effects

50MHz resonator

150MHz (3rd harm) resonator

history of max. current in the PSI accelerator

year

new beam intensity record at PSI-HIPA

- low beam losses are key issue
- recent improvements:
 - new ECR source (emittance)
 - reduced 50Hz residual beam jitter
 - aperture restrictions in Ring removed
- \rightarrow higher current at same loss rate possible

cyclotrons for high intensity beams

[separation scaling with turn number, off-center injection, space charge scaling]

classification of circular accelerators

	bending radius	bending field vs. time	bending field vs. radius	RF frequency vs. time	operation mode (pulsed/CW)	comment
betatron	\rightarrow	~			ш	induction
microtron	~	\rightarrow	\rightarrow	\rightarrow		varying h
classical cyclotron	~	\rightarrow		\rightarrow		simple, but limited E _k
isochronous cyclotron	~	\rightarrow	~	\rightarrow		suited for high power!
synchro- cyclotron	~	\rightarrow			ш	higher E _k , but low P
FFAG	>	\rightarrow	~	~	ш	strong focusing!
a.g. synchrotron	\rightarrow	~		>		high E _k

critical for cyclotrons: extraction, tuning, space charge

turn separation and interpretation

for clean extraction a large stepwidth (**turn separation**) is of utmost importance; in the PSI Ring all efforts were directed towards maximizing the turn separation

general scaling:
$$\frac{dR}{dn_t} = \frac{U_t}{m_0 c^2} \frac{R}{(\gamma^2 - 1)\gamma}$$
• Imited energy (< 1GeV)
• large radius R
• high energy gain U_t

violating isochronicity:
$$\frac{dR}{dn_t} = \frac{U_t}{m_0c^2}\frac{\gamma R}{(\gamma^2-1)(1-\gamma)}$$

possible on outer turns)

extraction with off-center orbits

betatron oscillations around the "closed orbit" can be used to increase the radial stepwidth by a factor 3 !

extraction profile measured at PSI Ring Cyclotron

tail generation: longitudinal space charge

 ▶ beam tails, blowup by long. space charge (overlapping turns) [sector charge density] × [time in cyc.] → ∞ (# turns)²
 ▶ loss at extraction element [1/turn separation] → ∞ (# turns)¹

In summary:

scaling of losses ~ (# turns)³ → high gap voltage advantageous!

is confirmed clearly by observation at PSI

tomographic phase space reconstruction – no tails visible (within resolution)

comment on tuning

- systematic strategy for general setup; e.g. using intermediate beam dumps to divide the machine into sections; using measurements of beam properties to identify problems [radial probes, radial probes with tilted wires, phase probes, loss monitors, masks with current measurement, collimators, wire scanners, inductive BPM's, ionization chambers]
- beam loss fine tuning (last 20%..50% of full current) is done completely empirically; subtle effects lead to population of beam tails; all machine sections starting from the ion source can contribute to the tails

losses and resulting activation

[measured loss statistics, activated components, service personnel dose]

loss development at PSI-HIPA

plots:

- loss current [nA] vs. beam current [μA]
- color code = frequency of operation at particular working point
- limit at 2200µA for standard operation; beyond that: test operation

component activation – Ring Cyclotron

activation level allows for necessary service/repair work

- personnel dose for typical repair mission 50-300µSv
- optimization by adapted local shielding measures; shielded service boxes for exchange of activated components
- detailed planning of shutdown work

activation map of Ring Cyclotron

(EEC = electrostatic ejection channel)

personnel dose for 3 month shutdown (2012):

41mSv, 149 persons max per person: 3.2mSv

cool down times for service:

 $2200 \rightarrow 1700 \ \mu\text{A}$ for 2h

 $0 \ \mu A$ for 2h

map interpolated from ~30 measured locations

comments on radiation safety at PSI

- only small fraction (~150-190) of monitored personnel really involved
- group of 10 colleagues responsible for radiation safety of accelerator facility
- monitoring of radiation in facilities by TLD/CR39 dosimeters (~100) + grid of remotely readable dosimeters (12+4); some (~5) dosimeters outside PSI area
- 10 hand and foot monitors at exits of experimental hall
- access to hot-cell and specific radioanalytics

history of accumulated charge and collective dose [note: step in number of considered persons]

Summary

- excellent progress at PSI in recent years; 1.3MW CW beam power is standard (record 1.4MW); the relative loss level is of the order 1..2·10⁻⁴, i.e. < 300Watts; average availability is 90%; 25-50 trips per day
- all stages of the accelerator contribute to halo generation; empirical tuning is most successful → depends on experience of operator
- very **high power operation** of accelerators requires special expertise in certain areas such as
 - loss monitoring/instrumentation, interlock and permit systems
 - thermo-mechanical and cooling problems
 - handling/characterization/disposal of activated components
 - licensing

message: good concepts are sustainable!

HB2012, Beijing Thank you for your attention !

spare transparencies

longitudinal space charge; evidence for third power law

- at PSI the maximum attainable current indeed scales with the third power of the turn number
- maximum energy gain per turn is of utmost importance in this type of high intensity cyclotron

 \rightarrow thus with constant losses at the extraction electrode the maximum attainable current scales as: $I_{\max} \propto n_t^{-3}$

Losses – required vacuum quality

- losses are caused by inelastic scattering at residual gas molecules
- use inelastic reaction cross section to estimate losses
- convert to mean free path
- compute pressure for 10⁻⁵ relative loss

pressure for loss < 10^{-5} : $P_i(air) > 0.01 \text{ mbar} \rightarrow easily achievable, vacuum no problem!$

electrostatic elements for inj./extr.

major loss mechanism is scattering in 50µm electrode!

parameters extraction channel: $E_k = 590 \text{ MeV}$ E = 8.8 MV/m $\theta = 8.2 \text{ mrad}$ $\rho = 115 \text{ m}$ U = 144 kV

HIPA beam trip statistics: non-interrupted run durations

HIPA beam trip statistics: duration of interruptions

these are integrated histograms at a certain time you read **how many** events with such duration or longer occur per day

radiation monitoring: dosimeter network in experimental hall

