

1111

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, Beijing, September 17 to 21, 2012.

Space Charge Effects in the NICA Collider Rings

O. Kozlov, JINR, Dubna

Contents

- 1. Introduction: The goal of the project
- 2. Facility scheme and operation scenario
- 3. Collider Luminosity
- 4. Beam preparation scheme
- 5. Beam accumulation
- 6. Stochastic cooling
- 7. Electron cooling
- 8. Conclusion

Introduction: The goal of the project

The goal of the project is

construction at JINR of a new accelerator facility that provides 1a) Heavy ion colliding beams 197Au79+ x 197Au79+ at $\sqrt{s_{NN}} = 4 \div 11 \text{ GeV} (1 \div 4.5 \text{ GeV/u} \text{ ion kinetic energy})$ at L_{average}= 1E27 cm-2·s-1 (at $\sqrt{s_{NN}} = 9 \text{ GeV}$)

1b) Light-Heavy ion colliding beams of the same energy range and luminosity 2) Polarized beams of protons and deuterons in collider mode: $p\uparrow p\uparrow \sqrt{s_{pp}} = 12 \div 27 \text{ GeV} (5 \div 12.6 \text{ GeV kinetic energy})$ $d\uparrow d\uparrow \sqrt{s_{NN}} = 4 \div 13.8 \text{ GeV} (2 \div 5.9 \text{ GeV/u ion kinetic energy})$ $L_{average} \ge 1E30 \text{ cm-}2\cdot\text{s-}1 (\text{at }\sqrt{s_{pp}} = 27 \text{ GeV})$

3) The beams of light ions and polarized protons and deuterons for fixed target

experiments:

Li ÷ Au = 1 ÷ 4.5 GeV /u ion kinetic energy p, p[↑] = 5 ÷ 12.6 GeV kinetic energy d, d[↑] = 2 ÷ 5.9 GeV/u ion kinetic energy

4) Applied research on ion beams at kinetic energy

from 0.5 GeV/u up to 12.6 GeV (p) and 4.5 GeV /u (Au)

Facility scheme and operation scenario

Collider Ring Composision. Ion Mode

NICA collider parameters

boundary conditions

meters	an	<u>id k</u>	00
	503,04		
23			1
0.6			1
0.35			
9.44/9.44			
40 π·mm·mrad			
±0.010			2
7.091			2
1.0	3.0	4.5	
2.75·10 ⁸	2.4·10 ⁹	2.2·10 ⁹	
0.62	1.25	1.65	3
1.1/	1.1/	1.1/	
1.01	0.89	0.76	
1.1e25	1e27	1e27	
190	700	2500	
	meters meters	metersan503,04230.60.350.4/9.4440 ⊤·mm·mra±0.010±0.0101.03.02.75·10 ⁸ 2.4·10 ⁹ 0.621.251.1/1.010.891.1e251e27190	metersand $503,04$ 23 23 0.6 0.35 $9.44/9.44$ $40 arbox{.mm.mr}$ $40 arbox{.mm.mr}$ $1.0 arbox{.010}$ $1.0 arbox{.010}$ 7.091 $1.0 arbox{.010}$ $2.75.10^8$ $2.4.10^9$ $2.2.10^9$ 0.62 1.25 $1.1/$ $1.1/$ $1.1/$ 1.125 1.275 1.125 1.25 1.125 1.25 1.125 1.250

Beam emittance (unnormalized) $\mathcal{E}_{b} \leq 1$ π ·mm·mrad, limited by the ring acceptance P. L(E_i) ≥ 1E27 cm-2·s-1 at 3.5 <</p> $E_i < 4.5 \text{ GeV/u} - \text{physics}$ requirement lon number per bunch is limited by injection chain

and ion storage time

duration: $N_b \le 2E9$ per bunch

For identical round colliding bunches the peak luminosity :

Bunch length has to be small enough to decrease "hour-glass" effect and to provide luminosity concentration in the detector center, but very small length increases tune shift and coherent instability:

Beam intensity is limited by space charge effects – "Tune shift criteria":

- 1. The Laslett tune shift most strong:
- 2. Beam-beam parameter:

For practical estimates the numerical criterion for beam stability is used:

 $\frac{N_b^2}{4\pi\epsilon\beta^*}F_C f_{HG}(\sigma_{s},\beta^*),$ $L = \cdot$

$$f_{HG}(\sigma_s / \beta^*) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{\exp(-u^2) du}{1 + (u\sigma_s / \beta^*)^2}$$

$$\Delta Q = \frac{Z^2 r_p}{A} \frac{N_b}{4\pi \beta^2 \gamma^3 \varepsilon} F_{SC} F_{b,} F_b = \frac{C_{Ring}}{\sqrt{2\pi} \sigma_s}$$

$$\xi = \frac{Z^2}{A} \frac{r_p N_b (1 + \beta^2)}{4\pi \beta^2 \gamma \varepsilon}$$

$$\Delta Q_{total} = \Delta Q + n_{\xi} \xi \le 0.05,$$

$$n_{\xi} = 2 - number of IPs$$

O.Kozlov HB2012, September 17 - 21, 2012, Beijing

From the Formulae above one can derive the simple relations between parameters:

Then at fixed Luminosity:

Energy Ranges of Two Regimes

Beam preparation scheme

Beam storage at the experiment energy :

1. RF barrier bucket system (RF1) allowing storage of the required beam intensity

2. 1st narrow-band RF system (RF2)

operating at harmonics of revolution frequency corresponding to the bunch number; it provides the beam bunching.

3. 2nd narrow-band RF system (RF3)

operating at harmonics number larger than the 1st one, that provides the bunch length necessary for collision experiments.

All stages are provided with cooling

Main parameters of RF systems

	RF1	RF2	RF3
Frequency, MHz	BB	11.4-12.8	34.2-38.4
Total voltage ampl., kV	5	100(50)	1000
Voltage/resonator, kV	5	25	125
Number of resonators	1	4	8
Resonator length, m	0.8	1.1	1.1
Total length, m	0.8	4.4	8.8

O.Kozlov HB2012, September 17 - 21, 2012, Beijing

TT

Beam stacking with electron cooling

Space Charge Effects in NICA Collider

Space charge effect during stacking and bunching

O.Kozlov HB2012, September 17 - 21, 2012, Beijing

Formation of the bunch shape T.Katayama

Ek=1.5 GeV/u, N=1e9, RF voltage=200kV, eta=0.1268, dp/p(initial)=5e-4(rms) (Gaussian)

O.Kozlov HB2012, September 17 - 21, 2012, Beijing

Stochastic cooling (3-4.5 GeV/u)

Bandwidth from 3 to 6 GHz Cooling times varies by about 2 times In the energy range from 3 to 4.5 GeV/u

O.Kozlov

Electron cooling

Maximum electron energy, MeV	2.5
Cooling section length, m	6.0
Electron beam current, A	1
Electron beam radius, cm	1
Magnetic field in cooling section, T	0.2
Magnetic field imperfection in cooling section	2×10^{-5}
Beta functions in cooling section, m	16
Longitudinal electron temperature meV	5.0

At higher energies 3-4.5 GeV/u: ECooling times comparable with IBS heating times and SCooling times; At lower energies 1-3 GeV/u: ECooling times ~20 times shorter than IBS heating times

O.Kozlov

Strategy of the cooling at experiment

IBS is calculated for equal rates in 3 degrees of freedom

Conclusion

- Collider has 2 modes of operation: Space Charge Dominated Regime (1-3 GeV/u) and IBS Dominated Regime (3-4.5 GeV/u)
- 2. Beam Cooling techniques are used for formation of high intensity and low emittance ion beams, and for providing the required luminisity life time
- 3. Stochastic cooling sufficient for IBS suppression is sufficient for beam stacking also
- 4. Electron cooling can be used for cooling at experiment in the total energy range
- 5. Electron cooling can provide effective stacking at small energy only
- 6. At energy larger than 3 GeV/u the experiment can be provided using electron cooling as well as stochastic, or combination of both methods
- 7. At energy below 3 GeV/u the experiment is provided using electron cooling. Possibility to increase of luminosity at minimum energy is related with space charge dominated mode

Tnank you for your attention!

F