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Abstract 
The University of Maryland Electron Ring (UMER) [1] 

uses nonrelativistic, high-current electron beams to access 
space charge phenomena observable in high-intensity 
hadron beams. The UMER beam parameters correspond 
to space charge incoherent tune shifts, at injection, in the 
range of 1-5.5 integers. Longitudinal induction focusing is 
used to counteract the space charge force at the edges of a 
long rectangular bunch, confining the beam for 100s of 
turns. We report on two recent findings: (1) Observation 
of a space-charge-induced longitudinal multi-streaming 
instability formed from overlapping bunch ends in a ring.  
An analytical theory successfully predicts the onset of the 
instability over a wide range of beam currents and initial 
pulse lengths. (2) Experimental observations of the 
formation and propagation of soliton wave trains arising 
from large-amplitude longitudinal perturbations.  Both 
phenomena are reproduced in WARP [2] simulations. 

INTRODUCTION 
Space-charge-dominated beams, in which the strength 

of space charge-induced expansion exceeds that from 
beam emittance, differ fundamentally from beams where 
space charge is merely a perturbation. The former can 
support a variety of collective modes and longitudinal 
space charge waves that can result in exotic structures on 
the beam, such as high-density rings, solitary waves, or 
beam halo. While some of this physics has had a long 
history of theoretical study [3-5], limitations of 
experimental facilities have, until the recent 
commissioning of UMER, prevented adequate 
experimental verification. Prior experimental studies of 
deep space charge suffered from inadequate transport 
distances, thus constraining them to measuring the initial 
transients in beam evolution. UMER, by contrast, 
accesses deep space charge over long transport distances 
(tune-shifts > 5 for many turns).  

This paper reviews two recent studies concerned with 
the evolution of noisy, or non-smooth, initial 
distributions.  First we discuss the evolution of a space-
charge-induced longitudinal multi-streaming instability 
[6] relevant to multi-bunch injection in a ring. Second, we 
discuss the formation and propagation of solitons [7] from 
large amplitude longitudinal perturbations, observed 
experimentally and reproduced in simulations. 

EXPERIMENTAL SETUP 
Figure 1 illustrates UMER. The UMER ring has 72 

quadrupoles and 36 dipoles arranged in 36 FODO cells of 
period 32 cm. The ring also has three glass gaps for 
applying longitudinal focusing and acceleration via 
induction cells. Currently the glass gap at RC4 is used as 
an induction cell for longitudinal focusing, RC16 for 
acceleration, and RC10 is used as a wall-current monitor. 
A 10 keV electron beam is produced from a gridded 
thermionic gun with a pulse length variable from 25-140 
ns.  The beam current (0.5-100 mA) and normalized rms 
emittance (0.3-3.0 m) are varied by means of an aperture 
wheel downstream of the anode.  The different beam 
currents enable varying the strength of space charge from 
the emittance-dominated to the extremely space-charge-
dominated.   

A single long rectangular bunch is injected through a 
pulsed dipole into the ring, at a repetition rate of 60 Hz.  
The bunch circulates until it is totally lost. Application of 
longitudinal focusing using an induction cell [8] has 
extended the containment of the bunch to hundreds of 
turns for the lower-current UMER beams.  The pulsed 
induction “ear fields” keep the beam ends from expanding 
and indefinitely maintain a rectangular bunch with a flat-
top. Development of additional induction modules for the 
higher current beams is in progress. An extraction section 
currently in the late design / early construction stage is 
planned for installation by summer 2013. 

MULTI-STREAM INSTABILITY 
Without longitudinal focusing, a bunch freely expands 

under its space charge self-fields. The expanding bunch 
ends fill the ring, interpenetrate, and wrap repeatedly [9], 
leading to a “DC” beam on the peak-to-peak current 
signal. The striated longitudinal phase space, however, 
drives a multi-stream instability different from the 
unbounded volumetric two-stream plasma instability. The 
same effect can occur in multi-bunch injection schemes in 
a ring, as predicted theoretically [10].  

We have observed this instability experimentally (Fig. 
2), and systematically studied it over a wide range of 
beam parameters. Figure 2 illustrates a typical signature 
of the instability on the wall-current monitor signal.  The 
peak-to-peak signal dwindles as the beam expands and 
becomes “DC” at about 7 s, followed by a damped 
lower-amplitude re-bunching of the beam. The instability 
appears at about 16.5 s as a sharper and more random re-
bunching, with higher-frequency content. 

We have derived a simple theoretical model that 
accurately predicts the onset of the instability.  The model 
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