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Abstract
Emittance growth and beam loss due to the space charge

force are enhanced by errors of the lattice. Nonlinearities

of the space charge force and lattice components are

integrated with Twiss and x-y coupling parameters into

one turn map. Twiss and x-y coupling parameters are

measureable quantities. We study space charge effects

based on the measured Twiss-coupling parameters.

INTRODUCTION
Emittance growth and beam loss are caused by chaotic

behavior near nonlinear resonances induced by space

charge force and nonlinear accelerator components. One

turn map including the space charge and the nonlinear com-

ponents characterizes the nonlinear property for long term

behavior. The space charge force is incorporated into one

turn map by integrating with a finite propagation step. The

one turn map is constructed by connecting the nonlinear

transfer maps, the nonlinear accelerator components and

space charge force, with linear transformation (represented

by transfer matrix) between them.

The beam shape, which characterizes the space charge

force, is determined by one turn map. The one turn map is

determined self-consistently by the space charge map with

the beam shape.

The linear optics parameters are measurable, where they

are for zero intensity. Transfer matrix and revolution ma-

trix is reconstructed by the measured optics parameters.

One turn map is constructed with the measured optics pa-

rameters. The one turn map based on measured optics is

deviated from the design one. Simulation using the map

gives worse emittance growth and beam loss than design

one. The degradation should appear in actual accelerators.

The beam loss caused by the optics errors can be recovered

by an optics correction.

In this paper, we discuss measurement of linear optics

parameters. One turn map is constructed by the measured

linear optics parameters, where the strength of nonlinear

components is assumed to be correct. Simulations using

the one turn map have been performed for J-PARC MR.

Some results, which is preliminary at present, are shown.

LATTICE TRANSFORMATION AND
SPACE CHARGE FORCE

One turn map (M) is defined how dynamical variables,

x(s) = (x, px, y, py, z, δ)
t, are tarnsferred in a revolution,

x(s+ C) =M(s)x(s), (1)

where C is the circumference. The transverse momentum

is normalized by design momentum p0, and the longitu-

dinal variables are defined by arrival time and momentum

deviation as z = v(t0 − t) δ = Δp/p0, respectively. One

turn map including the space charge force is expressed as

follows,

M(s) =

N−1∏
i=0

M0(si+1, si)e
−:Φ(si):, (2)

where M(si+1, si) is nonlinear transformation from si to

si+1. Φ(si), which is the space charge potential, is given

by solving Poisson equation with the beam distribution at

si.

The expression using the symbol : Φ : is

e−:Φ(si):p� = p� − ∂Φ(si)

∂x�
. (3)

where p� = px, py or δ, and x� = x, y or z. The integration

step (Δs = si+1 − si) should be chosen Δs � β, since

betatron phase advance for Δs should be small (� 1).

One turn map including only lattice nonlinear compo-

nents is decomposed by nonlinear map of the components

and transfer matrix between the components as follows,

M0(s) =

Nnl−1∏
i=0

M−1
0 (si+1, si)e

−:Hnl(si):. (4)

where M(si+1, si) is transfer matrix from si to si+1, and

e−:Hnl(si):p� = p� − ∂Hnl(si)

∂x�
. (5)

For example, Hnl for sextupole magnet is expressed by

Hnl(si) =
K2(si)

6
(x3 − 3xy2) K2 =

eB”

p0
(6)

One turn map including space charge force (Eq. 2) is ex-

pressed by the nonlinear transformation and linear transfer

matrix as follows,

M(s) =
N−1∏
i=0

M0(si+1, si)e
−:HI(si):, (7)

where N = Nnl + Nsc, and HI = Φ or Hnl. Simulation

codes for space charge effects have been developed based

on the description in Eq. 7 [1].
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LINEAR DYNAMICS AND
MEASUREMENT OF LINEAR OPTICS

PARAMETERS
One turn map for linear dynamics is represented by the

6× 6 revolution matrix,

x(s+ C) = M0(s)x(s) (8)

The revolution matrix is diagonalized blockwisely using a

matrix (V ) as follows, [2]

V (s)M0(s)V (s)−1 =

⎛
⎝ UX 0 0

0 UY 0
0 0 UZ

⎞
⎠ ≡ U (9)

where 2× 2 matrix is expressed by

Ui ≡
(

cosμi sinμi

− sinμi cosμi

)
(10)

U represents rotation of phase space of three decoupled

normalized variables

X(s) = V (s)x(s) X(s+ C) = UX(s) (11)

The phase rotation angle per revolution is μi = 2πνi,
where νi is tune of each decoupled space X,Y, Z.

V is given by eigenvector of M [2]. V is parametrized

by three matrices as follows,

V (s) = B(s)R(s)H(s) (12)

Each matrix is expressed as follows,

B =

⎛
⎝ BX 0 0

0 BY 0
0 0 BZ

⎞
⎠Bi =

⎛
⎝

1√
βi

0

αx√
βi

√
βi

⎞
⎠ (13)

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

r0 0 −r4 r2 0 0
0 r0 r3 −r1 0 0
r1 r2 r0 0 0 0
r3 r4 0 r0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(14)

r0 =
√
1− r1r4 + r2r3

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −ηx
0 1 0 0 0 −η′x
0 0 1 0 0 −ηy
0 0 0 1 0 −η′y
η′x −ηx η′y ηy 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(15)

H decomposed M into 4×4 and 2×2 matrices, HMH−1.

This operation is extraction of betatron coordinates sub-

tracting dispersion. R decomposes HMH−1 into three

2× 2 matrices with well-known form as

Mi(s) =

(
cosμi + αi sinμi βi sinμi

−γi sinμi cosμi − αi sinμi

)
.(16)

B normalizes the betatron motion from elliptic to circular

trajectory in the decoupled phase space.

Parameters containing in B (αi and βi) are Twiss param-

eters. Other parameters in R and H can be regarded as a

kind of Twiss parameters. We call them extended Twiss

parameters in this paper.

Betatron motion is treated by introducing the betatron

coordinates, which are extracted by H . Experimentally be-

tatron motion is extracted by a transverse kick at disper-

sion free section. In this case, it is sufficient to take into

account the matrix M with 4 × 4, and dynamical variable

is xβ = (x, px, y, py)β = x− η.

Courant-Snyder invariant is expressed by [3]

WX,Y = 2JX,Y = xT
βA

R
X,Y xβ , (17)

where

AR
i ≡ RS4AiR

−1 i = X,Y. (18)

AX,Y is written by Twiss parameters as follows,

AX =

⎛
⎝ γX αX

αX βX
0

0 0

⎞
⎠ (19)

and

AY =

⎛
⎝ 0 0

0
γY αY

αY βY

⎞
⎠ . (20)

The matrix S is the symplectic metric,

S4 =

(
S2 0
0 S2

)
S2 =

(
0 1
−1 0

)
. (21)

MEASUREMENT OF EXTENDED TWISS
PARAMETERS

Extended Twiss parameters are measured using turn-by-

turn monitors at J-PARC MR. Injection error for x or y di-

rection at dispersion free section applied, approximately X

or Y mode is induced, respectively.

The betatron trajectory of X mode with WX is expressed

by an ellipse in 4 dimensional phase space as follows,

δ(xTAR
Xx−WX) (22)

The trajectory contains y−py component in proportional to

the coupling strength. Figure 1 shows an example of phase

space trajectory given by a measurement.

Extended Twiss parameters are determined by the sec-

ond order moment in the phase space trajectory [4]. The

second order moment of the betatron trajectory is given by,

JX

⎛
⎜⎜⎝

r20βX −r20αX r0(−βXr1 + αXr2)
r20γX r0(αXr1 − γXr2)

βXr21 − 2αXr1r2 + γXr22

r0(−βXr3 + αXr4)
r0(αXr3 − γXr4)

βXr1r3 − αX(r1r4 + r2r3) + γXr2r4
βXr23 − 2αXr3r4 + γXr24

⎞
⎟⎟⎠ (23)

,
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Figure 1: Phase space trajectory in x−px−py phase space.

JY

⎛
⎜⎜⎝

βY r
2
4 + 2αY r2r4 + γY r

2
2

βY r3r4 + αY (r1r4 + r2r3) + γY r1r2
r0(βY r4 + αY r2)
−r0(αY r4 + γY r2)

(24)

βY r
2
3 + 2αY r1r3 + γY r

2
1

−r0(βY r3 + αY r1) r20βY

(αY r3 + γY r1) −r20αy r20γY

⎞
⎟⎟⎠

Comparing the beam envelope and measured envelope, ex-

tended Twiss parameters are obtained. Upper two lines in

Eq. 23 are used for X mode, while lower two lines in Eq. 24

are used for Y mode. The correlations among y or py in X

mode is contaminated by a leak of Y mode, vice versa.

Betatron phase advance between two monitors is given

by taking the correlation of the two monitor position.

cos(φX,i+1 − φX,i) =
〈x(si+1)x(si)〉√〈x(si+1)2)〉〈x(si)2〉

(25)

Figures 2 and 3 show measured beta function and x-y

coupling parameters. Measurement of beta function is done

by x(y) signal for X(Y) mode oscillation, while that of x-y

coupling is done by y signal for X mode oscillation, vice

versa. Reliability of the beta measurement is much better

than coupling. Calibration of monitor for rotation is un-

avoidable. At present the reliability of x-y coupling mea-

surement is not very good.

LINEAR APPROXIMATION: BEAM
ENVELOPE FORMALISM BASED ON

MEASURED EXTENDED TWISS
PARAMETERS

Beam envelope matrix is defined by averaging the beam

particle position in the phase space,

〈x(s)xT (s)〉 (26)

where the center of mass is subtracted in x.

Space charge force is linearized in the envelope formal-

ism [5, 6]. The force with an beam envelope is expressed
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Figure 2: Measured beta function.

Figure 3: Measured xy coupling parameters.

by a matrix transformation,

MΦ = T−1(θ)

⎛
⎜⎜⎝

1 0 0 0
kx 1 0 0
0 0 1 0
0 0 ky 1

⎞
⎟⎟⎠T (θ) (27)

where T is rotation matrix in the real coordinate space.

T (θ) =

⎛
⎜⎜⎝

cos θ 0 sin θ 0
0 cos θ 0 sin θ

− sin θ 0 cos θ 0
0 − sin θ 0 cos θ

⎞
⎟⎟⎠ (28)

The angle θ is tilt of the ellipse of the beam envelope in the

real coordinate space. The angle is expressed by the beam

envelope as follows,

tan 2θ =
〈xy〉

〈x2〉 − 〈y2〉 (29)

The linearized force of the space charge ki is determined

by the beam size along the principle axis (a, b).

kx =
4rpλ

β2γ3

1

a(a+ b)
ky =

4rpλ

β2γ3

1

b(a+ b)
, (30)
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where rp and λ are the proton classical radius and line den-

sity of the proton beam, respectively. The sizes are ex-

pressed by

a2 = 〈x2〉 cos2 θ + 〈xy〉 sin 2θ + 〈y2〉 sin2 θ (31)

b2 = 〈x2〉 sin2 θ − 〈xy〉 sin 2θ + 〈y2〉 cos2 θ (32)

The transfer matrix is expressed by product of the trans-

fer matrices for zero intensity and for the space charge

force as follows,

M(s′, s) =
N ′−1∏
i=0

M0(si+1, si)MΦ(si) (33)

The revolution matrix is given by the same way, s′ = s+C.

The beam envelope is transferred by the matrices as fol-

lows

〈x(s′)xT (s′)〉 = M(s′, s)〈x(s)xT (s)〉MT (s′, s) (34)

where s0 = s, sN ′ = s′.
The beam envelope is transferred by the revolution ma-

trix. Equilibrium envelope in linear approximation is given

by applying the periodic boundary condition to the enve-

lope,

M(s)〈xxT 〉MT (s) = 〈xxT 〉 (35)

Since MΦ(si) contains the beam envelope, the solution is

given self-consistently. The solution is given by

〈xxT 〉 = V −1

⎛
⎜⎜⎝

εX 0 0 0
0 εX 0 0
0 0 εY 0
0 0 0 εY

⎞
⎟⎟⎠ (V −1)t (36)

Solving the periodic M , which means obtaining self-

consistent extended Twiss parameters, is equivalent to solv-

ing equilibrium envelope.

Figure 4 shows self-consistent coupling parameters.

NONLINEAR SPACE CHARGE EFFECT
WITH THE MEASURED EXTENDED

TWISS PARAMETERS
Accelerators are designed so that nonlinear components

are placed with a symmetry to avoid structure resonances.

Symmetry of linear optics guarantees to suppress space

charge origin resonances. For example, sextupoles and

space charge force do not induce skew resonance compo-

nent in the design lattice. Super-periodicity for the beta

function suppresses resonances except for structured one.

The symmetry of the design lattice is broken in actual ac-

celerators. In general people generate random errors in ac-

celerator components, and evaluate the effects of the errors.

However such error lattice is mere a sample of random gen-

eration.

Now the design transfer matrix is replaced by the mea-

sured transfer matrix. One turn map including space charge
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Figure 4: (Preliminary) Tune summation (top) and x-y cou-

pling parameters (bottom) given by solving the beam enve-

lope equation.

force (Eq. 2) is expressed by the nonlinear transformation

and linear transfer matrix as follows,

M(s) =
N−1∏
i=0

M(si+1, si)e
−:HI(si):, (37)

where N = Nnl +Nsc, and HI = Φ or Hnl.

The designed transfer matrix is corrected by measured

extended-Twiss parameters V and measured betatron phase

ΔUi to replace with the measured one,

M(si+1, si) = V −1(si+1)Ui+1,iΔUiV (si) (38)

= V −1(si+1)V0(si+1)M0(si+1, si)V
−1
0 (si)ΔUiV (si)

In the simulation, the operations V −1(si+1)V0(si+1) and

V −1
0 (si)ΔUiV (si) are inserted in the transfer map be-

tween si to si+1.

We can evaluate effects of the optics errors at sextupole

and space charge force one by one. Some preliminary

results are presented in the last part of this paper. Fig-

ure 5 shows the beam loss for several cases. In top pic-

ture, optics errors V = BmesRmes is used in space charge

force, while V = B0R0 (red), V = BmesRmes (green),

V = BmesR0 (blue) and V = B0Rmes (magenta) are
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used in sextupoles, respectively. In bottom picture, optics

errors V = B0R0 is used in sextupoles, while V = B0R0

(red), V = BmesRmes (green), V = BmesR0 (blue) and

V = B0Rmes (magenta) are used in sextupole, respec-

tively. Betatron phase shift ΔU is not taken into account

yet. The coupling errors in sextupole magnets degrade the
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Figure 5: (Preliminary) Beam loss for various cases of V
given by simulation.

beam loss dominantly.

Figure 6 shows the intensity dependence of the beam loss

for two cases. In Top picture, V = BmesRmes is used in

space charge force and sextupoles. In bottom picture, V =
BmesRmes is used in space charge force, while V = B0R0

in sextupoles.

SUMMARY
Transfer and revolution matrices are parametrized by

the extended Twiss parameters and betatron phase. These

quantities are measurable using turn-by-turn monitors at J-

PARC MR. The measured transfer and revolution matrices

are used in linear envelope equation and space charge sim-

ulations. x-y coupling at sextupoles seems dominant for the

beam loss. Space charge force may be role of tune spread

source.

In the next step, we should understand the mechanism,

which resonances are induced. It should be clear consis-
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Figure 6: (Preliminary) Intensity dependence of the beam

loss. Top picture is obtained for V = Bmeas.Rmeas.

at both of space charge and sextupoles. Bottom picture

is obtained for V = Bmeas.Rmeas. at space charge and

V = B0R0 at sextupoles.

tency with the beam envelope theory. Most important issue

is to establish the reliability of x-y coupling measurement,

and development of the correction scheme of the extended

Twiss parameters.
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