Author: Vaccaro, V.G.
Paper Title Page
TUO1A01 The High Intensity/High Brightness Upgrade Program at CERN: Status and Challenges 226
 
  • S.S. Gilardoni, G. Arduini, T. Argyropoulos, S. Aumon, H. Bartosik, E. Benedetto, N. Biancacci, T. Bohl, J. Borburgh, C. Carli, F. Caspers, H. Damerau, J.F. Esteban Müller, V. Forte, R. Garoby, M. Giovannozzi, B. Goddard, S. Hancock, K. Hanke, A. Huschauer, G. Iadarola, M. Meddahi, G. Métral, B. Mikulec, E. Métral, Y. Papaphilippou, S. Persichelli, G. Rumolo, B. Salvant, F. Schmidt, E.N. Shaposhnikova, R. Steerenberg, G. Sterbini, M. Taborelli, H. Timko, M. Vretenar, R. Wasef, C. Yin Vallgren, C. Zannini
    CERN, Geneva, Switzerland
  • G. Franchetti
    GSI, Darmstadt, Germany
  • M. Migliorati
    University of Rome "La Sapienza", Rome, Italy
  • A.Y. Molodozhentsev
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • M.T.F. Pivi
    SLAC, Menlo Park, California, USA
  • V.G. Vaccaro
    Naples University Federico II, Mathematical, Physical and Natural Sciences Faculty, Napoli, Italy
 
  The future beam brilliance and intensities required by the HL-LHC (High-Luminosity LHC) project and for possible new neutrino production beams triggered a deep revision of the LHC injector performances. The analysis, progressing in the framework of the LHC Injectors Upgrade (LIU) projects, outlined major limitations mainly related to collective effects - space charge in PSB and PS, electron cloud driven and TMCI instabilities in the SPS, longitudinal coupled bunch instabilities in the PS for example - but also to the existing hardware capability to cope with beam instabilities and losses. A summary of the observations and simulation studies carried out so far, as well as the future ones, will be presented. The solution proposed to overcome the different limitations and the plans for their implementation will be also briefly reviewed.  
slides icon Slides TUO1A01 [12.748 MB]  
 
WEO1A01 Impedance Studies of 2D Azimuthally Symmetric Devices of Finite Length 344
 
  • N. Biancacci, E. Métral, B. Salvant
    CERN, Geneva, Switzerland
  • N. Biancacci
    Rome University La Sapienza, Roma, Italy
  • M. Migliorati, L. Palumbo
    URLS, Rome, Italy
  • V.G. Vaccaro
    Naples University Federico II, Mathematical, Physical and Natural Sciences Faculty, Napoli, Italy
 
  In circular accelerators, the beam quality can be strongly affected by the self-induced electromagnetic fields excited by the beam in the passage through the elements of the accelerator. The beam coupling impedance quantifies this interaction and allows predicting the stability of the dynamics of high intensity, high brilliance beams. The coupling impedance can be evaluated with finite element methods or using analytical methods, such as Field Matching or Mode Matching. In this paper we present an application of the Mode Matching technique for an azimuthally uniform structure of finite length: a cylindrical cavity loaded with a toroidal slab of lossy dielectric, connected with cylindrical beam pipes. In order to take into account the finite length of the structure, with respect to the infinite length approximation, we decompose the fields in the cavity into a set of orthonormal modes. We obtain a complete set of equations using the magnetic field matching and the non-uniform convergence of the electric field on the cavity boundaries. We present benchmarks done with CST Particle Studio simulations and existing analytical formulas, pointing out the effect of finite length and non-relativistic beta.  
slides icon Slides WEO1A01 [6.689 MB]