Paper |
Title |
Page |
MOP241 |
An Experiment on Hydrodynamic Tunnelling of the SPS High Intensity Proton Beam at the HiRadMat Facility |
141 |
|
- J. Blanco, F. Burkart, N. Charitonidis, I. Efthymiopoulos, D. Grenier, C. Maglioni, R. Schmidt, C. Theis, D. Wollmann
CERN, Geneva, Switzerland
- E. Griesmayer
CIVIDEC Instrumentation, Wien, Austria
- N.A. Tahir
GSI, Darmstadt, Germany
|
|
|
The LHC will collide proton beams with an energy stored in each beam of 362 MJ. To predict damage for a catastrophic failure of the protections systems, simulation studies of the impact of an LHC beam on copper targets were performed. Firstly, the energy deposition of the first bunches in a target with FLUKA is calculated. The effect of the energy deposition on the target is then calculated with a hydrodynamic code, BIG2. The impact of only a few bunches leads to a change of target density. The calculations are done iteratively in several steps and show that such beam can tunnel up to 30-35 m into a target. Similar simulations for the SPS beam also predict hydrodynamic tunnelling. An experiment at the HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS) is performed to validate the simulations. The particle energy in the SPS beam is 440 GeV and has up to 288 bunches. Significant hydrodynamic tunnelling due to hydrodynamic effects are expected. First experiments are planned for July 2012. Simulation results, the experimental setup and the outcome of the tests will be reported at this workshop.
|
|
|
MOP244 |
CERN High-Power Proton Synchrotron Design Study for LAGUNA-LBNO Neutrino Production |
154 |
|
- R. Steerenberg, M. Benedikt, I. Efthymiopoulos, F. Gerigk, Y. Papaphilippou
CERN, Geneva, Switzerland
|
|
|
Within the framework of the LAGUNA-LBNO project, CERN has started design studies in view of producing neutrinos for future long base line neutrino experiments. These design studies foresee a staged approach in the increase of the primary proton beam power, used for the neutrino production. The first step consists of exploring the feasibility of a CERN SPS beam power upgrade from the existing 500 kW, presently available to CNGS, to 750 kW. This beam should then be transferred to a new to be built neutrino beam line that is dimensioned for a beam power of 2 MW. The 2 MW proton beam is to be provided at a subsequent stage by a 30 - 50 GeV High-Power Proton Synchrotron (HP-PS), which is a major part of the design studies. This paper will provide an overview of the project and then focus on the preliminary ideas for the HP-PS design study.
|
|
|