Author: Baudrenghien, P.
Paper Title Page
WEO1A02 LHC Impedance Model: Experience with High Intensity Operation in the LHC 349
 
  • B. Salvant, O. Aberle, G. Arduini, R.W. Aßmann, V. Baglin, M.J. Barnes, P. Baudrenghien, A. Bertarelli, C. Bracco, R. Bruce, X. Buffat, F. Carra, F. Caspers, G. Cattenoz, S.D. Claudet, H.A. Day, J.F. Esteban Müller, M. Garlaschè, L. Gentini, B. Goddard, A. Grudiev, B. Henrist, W. Herr, S. Jakobsen, R.J. Jones, G. Lanza, L. Lari, T. Mastoridis, N. Mounet, E. Métral, A.A. Nosych, J.L. Nougaret, S. Persichelli, T. Pieloni, A.M. Piguiet, S. Redaelli, F. Roncarolo, G. Rumolo, B. Salvachua, M. Sapinski, E.N. Shaposhnikova, L.J. Tavian, M.A. Timmins, J.A. Uythoven, A. Vidal, R. Wasef, D. Wollmann
    CERN, Geneva, Switzerland
  • A.V. Burov
    Fermilab, Batavia, USA
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  The CERN Large Hadron Collider (LHC) is now in luminosity production mode and has been pushing its performance in the past months by increasing the proton beam brightness, the collision energy and the machine availability. As a consequence, collective effects have started to become more and more visible and have effectively slowed down the performance increase of the machine. Among these collective effects, the interaction of brighter LHC bunches with the longitudinal and transverse impedance of the machine has been observed to generate beam induced heating and transverse instabilities since 2010. This contribution reviews the current LHC impedance model obtained from theory, simulations and bench measurements as well as a selection of measured effects with the LHC beam.  
slides icon Slides WEO1A02 [7.991 MB]  
 
THO1C04 Performances and Future Plans of the LHC RF 565
 
  • P. Baudrenghien, T. Mastoridis
    CERN, Geneva, Switzerland
 
  The ramp-up of the LHC operation has been exceptionally fast: from the first acceleration of a single bunch at nominal intensity (1.1· E11 p) to 3.5 TeV/c on May 2010, to the accumulation of 11 fb-1 integrated luminosity two years later (June 2012). On the RF side this was made possible by a few key design choices and several developments, that allow reliable LHC operation with 0.35 A DC beam at 4 TeV/c (1380 bunches at 50 ns spacing, 1.5·1011 p per bunch). This paper reviews the RF design and presents its performance. Plans are also outlined that would allow operation with 25 ns bunch spacing (doubling the beam current) and even increased bunch intensity with the target of above 1A DC current per beam, without big modification to the existing RF power system.  
slides icon Slides THO1C04 [9.945 MB]