High gradient IFEL acceleration and deceleration in strongly tapered undulators

J. Duris, N. Sudar, I. Gadjev, A. Murokh, P. Musumeci

FEL Conference Daejeon, Korea Aug 26, 2015

Outline

- IFEL acceleration
 - Background
 - Rubicon IFEL experiment at ATF
 - Designs for GeV/m IFEL
 - Genesis informed tapering scheme (GITS)
- TESSA deceleration
 - EUV afterburner simulations
 - Low gain Nocibur IFEL decelerator experiment
 - High gain UV amplifier experiment @ ATF2
- GITS applied to x-rays

IFEL Interaction

In an FEL energy in the e-beam is transferred to a radiation field

In an IFEL the electron beam absorbs energy from a radiation field.

Undulator magnetic field to couple high power radiation with relativistic electrons

$$K_{l} = \frac{eE_{0}}{mc^{2}k} \qquad \qquad K = \frac{eB}{mck_{w}}$$

Significant energy exchange between the particles and the wave happens when the resonance condition is satisfied.

Why are we interested in IFELs?

- IFEL well suited for mid-high energy ranges (50 MeV *up to few GeV*)
 - High power laser wavelengths available (10 μ m, 1 μ m, 800 nm)
 - Mature permanent magnet undulator technology (cm periods)
- *Plane wave or far field* accelerator: minimal 3D effects.
 - Transverse beam dimensions can be mm-size for µm-scale accelerating wavelength.
- Vacuum-based accelerator
 - *Efficient* mechanism to transfer energy from laser to electrons
 - Simulations show high energy, high quality beams with *large gradient ~GeV/m* achievable with current technology!

Preservation of e-beam quality/emittance and high capture.

- **Stable energy output:** static undulator field sets resonant energy.
- Potential for compact GeV-class accelerators for light sources

Rubicon IFEL experiment

- Helical geometry high gain high gradient IFEL
- First strongly tapered helical undulator
- Two different tapers used

0.2

Transverse displacement (mm)

Demonstrate control of the final beam properties by undulator tuning

Input e-beam energy	50 MeV
Average accelerating gradient	100 MV/m
Laser wavelength	10.3 µm
Laser power	100-300 GW
Laser focal spot size (w)	980 µm
Laser Rayleigh range	30 cm
Undulator length	54 cm
Undulator period	4 – 6 cm
Magnetic field amplitude	5.2 – 7.7 kG

High quality output beams

- 93 MeV 1.8 % energy spread
- Very reproducible (mean energy std < 1.5 %) despite 30% rms laser power fluctuations
- Laser intensity 5 orders of magnitude lower than LWFA

ARTICLE

Received 3 Jun 2014 | Accepted 8 Aug 2014 | Published 15 Sep 2014

p 2014 DOI: 10.1038/ncomms592

High-quality electron beams from a helical inverse free-electron laser accelerator

J. Duris¹, P. Musumeci¹, M. Babzien², M. Fedurin², K. Kusche², R.K. Li¹, J. Moody¹, I. Pogorelsky², M. Polyanskiy², J.B. Rosenzweig¹, Y. Sakai¹, C. Swinson², E. Threlkeld¹, O. Williams¹ & V. Yakimenko³

Emittance

measurement

- Quad scan on energy dispersed beam
- Emittance growth (from 2 μm -> 3 μm) is due to mismatching in the undulator

Laser on – consecutive shots

Most recent Rubicon run

- UCLA permanent magnet based prebuncher
- Permanent magnet chicane with adjustable R₅₆
- Achieved > 50% capture
- Better matching into undulator **preserves emittance**

~30 cm

Accelerated emittance 2.4 um

0.5 GeV IFEL at ATF2

Design aiming at 0.5 GeV output energy Flexibility : undulator can be retuned 2e-4 avgx 90-40 -2e-4 0.0 1.0 0.5 avgz **ATF2 stage 1 upgrade parameters** 50-150 MeV E-beam energy Laser beam power 10-100 TW

Demonstrate GeV/m gradients

Demonstrate GeV-class energy gain

Parameter	Value
Laser power	25 TW
Laser pulse length	> 0.5 ps
M ²	1.5
Gap	10 mm
Input energy	90 MeV
Output energy	500 MeV
Energy spread	2 %
Undulator length	75 cm
Gradient	> 0.5 GeV/m

Applications

 Inverse Compton Scatteringbased compact gamma-ray

- Compact Modelocked soft-X-ray FEL
 - Take advantage of current increase
 - Use chicane to realign radiation spikes with e-beam modulation

 Recirculate drive laser for IFEL to increase repetition rate and average flux of ICS photons

LLNL Ti:Sa IFEL accelerator

- First TW-class laser driven IFEL
- Strongly tapered undulator for diffractiondominated interaction
- Short pulses (sub-ps) interaction
- 77 MeV 122 MeV in 22 cm
- > 200 MV/m gradient !
- Sub-ps synchronization and timing

IFEL signal

0 t (ps)

GeV IFEL concept

Achieve GeV/m gradient with commercially available Ti:Sa laser

- 20 TW, 800 nm laser
- 100 MeV e-beam prebunched •
- 1m long permanent magnet undulator ullet
- Constant resonant phase $-\pi/4$ ullet
- 920 MeV energy gain in 1 m • undulator

z = 0. m

110

100

Phase

2

3

Improved bunching schemes

Harmonic prebuncher

Linearize ponderomotive gradient using harmonics

Adiabatic prebuncher

Ramp up the field to capture all of the input phase space and preserve longitudinal emittance

Put laser focus at the end of long undulator

Adaptive resonant phase

Vary resonant phase to keep action constant as separatrix grows (KMR)

Beam loading effects

- Fully self-consistent IFEL model
 - Self-consistent treatment of EM fields
 - Period-average and SVEA approximations
 - GENESIS-based
 - Diffraction included
 - Beam loading

Laser depletion limits acceleration

Compensate laser power absorption in taper design

Genesis Informed Tapering Scheme

Solve tapering equations with help of 3D FEL code Genesis

$$\frac{d \lambda_w}{d z} = -\frac{8 \pi K_l K \operatorname{Sin}[\psi_r]}{1 + K^2 + 2 \lambda_w K \frac{\partial K}{\partial \lambda_w}}$$

$$K_l = \frac{e\,\lambda}{2\,\pi\,m\,c^2}\,\sqrt{2\,Z_0\,I_{\rm crit}}$$

Solve tapering period-by-period

- Run Genesis on a period
- Select capturable particles (within the ponderomotive bucket)
- Measure min intensity seen by particles => threshold for capture
- Calculate new period and undulator parameter
- Saves taper as well as simulated data

GITS offers options to dynamically optimize different simulated e-beam and radiation parameters: maximize power transfer, minimize detrapping, play with resonant phase, etc.

Useful for loaded IFEL design.

Lessons from Inverse FEL

- FEL beam-laser energy exchange is usually < 1 MeV/m
- IFEL demonstrated energy exchange rate ~ 100 MeV/m
- Design studies indicate possibility of GeV/m gradients
- Beam loading compensation: 10 kA beam absorbs 50% power
- Can we run IFEL in reverse?

In an IFEL the electron beam absorbs energy from a radiation field.

UCLA results from prebunched RUBICON

Tapering Enhanced Stimulated Superradiant Amplification

- <u>Reversing the laser-acceleration process</u>, we can extract a large fraction of the energy from an electron beam provided:
 - A high current, microbunched input e-beam
 - An intense input seed
 - Gradient matching via GITS to exploit growing radiation field

TESSA

- Reach *IFEL gradients* with **large laser intensity** => input seed > FEL saturation intensity
- Aggressive tapering
 - Use tapering equations with radiation field sampled by capturable particles simulated with Genesis (GITS)
- Rapid deceleration with minimal beam losses
 - Prebunch beam => smaller longitudinal emittance (smaller beam)
 - Focus laser => greater acceptance (larger bucket)

TESSA afterburner at 13.5 nm

- Refocusing SASE (~GW) to recreate high intensity condition
- 4 kA @ 1 GeV = 4 TW beam power available
- Achieved 45% efficiency in 23 meters!
- High rep rate => high average power

FEL undulator (saturated)

NOCIBUR IFEL deceleration experiment

- Use RUBICON IFEL set up in reverse at ATF/BNL
- Retapered the 0.5 m undulator for deceleration
- Potentially extract 40 % of energy from a relativistic electron beam in half a meter

Parameter	Value	a)	b) Undulator parameter
E-beam energy	65 to 34 MeV	Ê 0.055	2.2
E-beam current	100 -> 400 A	0.050	<u>₩</u> ^{2.0} 1.8
Laser focal intensity	4 TW/cm ²	² 0.045 0.040	1.6
Laser wavelength	10.3 µm	0.0 0.1 0.2 0.3 0.4 0.5 Position (m)	0.0 0.1 0.2 0.3 0.4 0.5 Position (m)
Rayleigh range	30 cm		80 70
Laser waist	1.0 mm	uer gy (0	(MeV) 00
Input peak power	100 GW		$\frac{50}{40}$ 1D sim
Output peak power	130 GW		30 0.0 0.1 0.2 0.3 0.4 0.5
		Distance along undulator (m)	Position (m)

IFEL decelerator experiment at ATF/BNL

- First results (see N. Sudar TUP074)
- Next step:
 - compress input beam +
 prebunch for higher capture
- Hard to measure radiation: few mJ on top of 1 J seed
 - Use spatial cuts & time resolved diagnostics
- Performance scales with beam power

Preliminary results

Seeded TESSA Amplifier

- Nocibur limitation: deceleration experiment (low gain), laser beam is much longer than e-beam, amplification is hard to measure
- To demonstrate orders of magnitude amplification (high gain), we plan to use 266 nm laser as a seed, focused to a small spot size with a 350 MeV beam at 1 kA at ATF2
- Preliminary studies indicate over 3 orders of magnitude amplification in 4-5 meters undulator at 266 nm, with energy extraction in the range of 10-30 % depending on the e-beam parameters.

GITS applied to X-ray production

- **GITS formalism** also useful for tapering x-ray FEL's
- Relation to other tapering approaches
 - Tapering enhancement to stimulated superradiance (A. Gover, PRSTAB'05)
 - Local dynamics vs global optimization (Y. Jiao, et al. PRSTAB'12; C.Emma, et al. PRSTAB'14)

Parameter	Value
Wavelength	0.3 nm
Self-seeding power	5 MW
Energy	14.35 GeV
Current	4 kA
Bunching	Shot noise
Spot size (rms)	11 µm
Norm. emittance	0.3 um

Sideband instability management

- Shot noise suppression reduces starting power in sidebands (Gover & Dyunin PRL'09; Ratner, Huang & Stupakov PRSTAB'11)
- Uniformly fill bucket to prevent growth (KMR)
- Taper hard to change synchrotron period
- Actively suppress with phase shifters
 - Phase shift peak sideband by π for deconstructive interference while preserving fundamental
 - Challenge to make nearly isochronous chicanes

Sideband suppression

- Periodically add phase delays to shift the peak sideband by π and recover more power
- Required delays on the order of $z_s(1 + K^2)/4\gamma^2$ or 30 100 nm

Conclusion

- Experiments point to IFEL as mature and reliable laser-based high gradient accelerator technology
- Push to GeV/m gradient and GeV energy gain
- Enable laser-driven compact accelerator applications
- High gradient IFEL deceleration: TESSA can achieve over an order of magnitude improvement to FEL efficiency with high intensity seed laser
- GITS algorithm useful for hard x-ray FELs, but lack of intense seed necessitates sideband growth management

IFEL stability

IFEL output remarkably stable considering input fluctuations

- Resonant energy laser intensity independent
- Energy spread and jitter set by ponderomotive bucket height which scales as fourth root of the laser intensity
 - => δη/η ~ ¼ dI/I

Source of error	Fluctuations
Laser power	30 % rms
Laser position dx/w _o	15 % rms
E-beam time of arrival jitter	~1 ps (20% of laser duration)

Adaptive resonant phase

As suggested in KMR, resonant phase may be chosen to keep the action constant as the separatrix grows.

 $J_b = J_{b,0}$ $\psi_r = \operatorname{sgn}(\psi_{r,0}) f_J^{-1} \left(\sqrt{\frac{\lambda_{u,0} K_{l,0} K_0}{\lambda_u K_l K}} f_J(\psi_{r,0}) \right)$

