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A Collective effects (Coherent Synchrotron Radiation, Geometric Transverse Wakefield )
“misalign” bunch slices in the transverse phase space: ¢,,.,; is increased
albeit g, may be not, whereas Lgjic. ~ Leoop << Lounch:
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[2] Tanaka et al. NIMA 2004

Single KiCk Erl”or (DipOlG-like) [3] Chae et al., FEL 2004

[ Consider a bunch subjected to dipole-like kicks in the undulatori?],
e.g. due to steering magnets or misaligned quadrupoles.

1. Lack of photons/electrons overlap:

Microbunched e-beam M the undulator spontaneous radiation does not
”H’ ‘ sustain efficiently the coherent emission,
- I,
‘ G,SKE ~ 1_ 92 /92 > c ﬂ‘/LG
. After k|ck Ogye SKE | Ye
Bunching . ) )
wavefront 2. Smearing of microbunching:

the kick enhances the arrival time difference
of electrons belonging to the same
wavefront, so spoiling the phase coherence,
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The effect of angular divergence (" de-
bunching”) is far more important than the
lack of transverse overlap (" sustainment”).



Single Kick Error (Dipole-like)

[2] Tanaka et al. NIMA 2004
[3] Chae et al., FEL 2004

[ Consider a bunch subjected to dipole-like kicks in the undulatori?],
e.g. due to steering magnets or misaligned quadrupoles.
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Projected Emittance Growth

O We now consider error kicks that affect individual slices, e.g. from
CSR in a dipole, and from GTW in an RF cavity.

= The "X-matrix” provides an RMS estimate of Ag,.,; induced by those
perturbations. For a single angular error (~Ax’):

- Ax?
comfine( 7 P

Twiss functions are at the
location of the perturbation

= Consider the uncorrelated sum of m-consecutive €SR kicks in magnetic
compressors and &TW kicks in the linac. The resultant projected
emittance, e.g. at the undulator, turns out to be:

£, ~ gnjo\/lﬂ[ (1 + P"(gn,l._1 )) =...

i=l1
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Collective Angle
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Collective Angle This is the resultant

. g4 angular spread of the
This is solely ’” l- 18,02, R bunch slices’ centroids:
8n,f ~ gn,i H (1 T P (gn,i—l )) = gn,i 1 +

determined
by the linac
dynamics.

i=l1

gn i
This is <B> in the
undulator.
(b)
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Collective Angle

This is solely
determined
by the linac
dynamics.

In the LINAC, twd®
slices are displaced

along the direction
of the kick.

The slice emittance is
unperturbed, while the
projected is enlarged.

(c)
In the UNDULATOR,

if the beam is matched
toa SMALL B, the
slices are largely

dispersed in angle:
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e

This is <B> in the
undulator.

€y Ngnz\/lﬂ[(l"'Pl( Enie 1)) Eni

i=1

simone.dimitri@elettra.eu

This is the resultant
angular spread of the
bunch slices’ centroids.
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AFTER the kick(s), the
slices follow different
x, trajectories in phase
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(b) space, but the projected
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3 D Gain Length [7] Di Mitri, Spampinati, PRSTAB 17, 2014
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3-D Gain Length
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Comparison with M.Xie-L

Q FERMI-/ike linac (S-band, 1.4 GeV, 0.5 kA, 10 nm)

Choice of the
Linac working point

FEL Conf., Daejeon, 08/2015

5

e
o~ w

)
3

3-D Gain Length [m]

S
T

o
(8, ]
T

w
T

[
(&)}
T

L]
T

i
w
T

SE— Lg,SD collective

T Lg,SD Ming Xie

~
-
—————————————

o
-
------
-

3-D Saturation Power [GWV]

(&)}

10

15 20 25

35 40

Compression Factor in BC1

simone.dimitri@elettra.eu

4

o
w

w
T

)
o
T

]
T

-
w
T

-
T

>
w
T

o

[7] Di Mitri, Spampinati, PRSTAB 17, 2014

, ohe-stage compression.

— Psat,3D collective
L i P

sat, 3D

Ming Xie

_______
- -
-
-

1
10

1
15

1
20

1
25

1 1
30 35 40

Compression Factor in BC1

18



[7] Di Mitri, Spampinati, PRSTAB 17, 2014

Comparison with M.Xie-L

O FERMI-/ike linac (S-band, 1.4 GeV, 0.5 kA, 10 nm), one-stage compression.
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Comparison with M.Xie-L.
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Comparison with M.Xie-L.

Q FERMI-/ike linac (S-band, 1.4 GeV, 0.5 kA, 10 nm)
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Comparison with M.Xie-L.

Q FERMI-/ike linac (S-band, 1.4 GeV, 0.5 kA, 10 nm)
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Collective Effects

CSR in a 4-Dipole Compressorl4!:

[4] Dohlus, Emma, Limberg ICFA 38, 2005
[5] Raubenheimer PRSTAB 3, 2000
[6] Di Mitri, Cornacchia Phys. Rep. 539, 2014

GTW in RF cavities!®!:
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Conclusions

A Lg o aims to include the beam projected dynamics. A deviation ~10%
was found vs. 3-D time-dependent simulations, over a wide range of f,.

Q When g, > &4, @ considerable deviation from M.Xie-L; appears.

This suggests a larger B, for optimum FEL performance.

[ The model can be used either for tuning of the accelerator in order
to maximize the FEL performance, or for specifying the FEL tolerance
on the beam projected emittance, vs. the undulator optics.

» Further numerical studies will assess the limits of the proposed model:
= <02_,> neglects correlations between consecutive CSR and GTW kicks.
= the “z-factor” in L, ., might actually depend on e-beam parameters.
= P+ and L., were re-scaled to the 1-D model.
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