MIR-FEL Oscillator Lasing by Photocathode Operation of LaB₆ Thermionic Cathode in KU-FEL

<u>H. Zen</u>, S. Suphakul, T. Kii, K. Masuda, H. Ohgaki : IAE, Kyoto University R. Kuroda, Y. Taira : AIST

The 37th Ineternational Free Electron Laser Conference

Introduction

KU-FEL Upgrade Project Thermionic Cathode → Photocathode

Thermionic RF Gun

- Simple and Low cost
- Back-bombardment Effect
- Low bunch charge
- Good for high Ave. Power

Photocathode RF Gun

- Need Expensive ps-Laser
- No Back-bombardment
- High bunch charge
- Good for high peak Power

Our Upgrade Project

- Use same RF gun
- Use same cathode (LaB₆)
- Use same beamline, undulator and optical cavity
- Develop multi-bunch UV-laser for photoemission

Increase peak power of KU-FEL

Multi-bunch UV-Laser

2010 : Start development -> 2014 : Completed

Main Component

- Nd:YVO₄ Mode-locked Oscillator & Integrated Acousto-Optic Modulator (AOM) (89.25 MHz, 7.5 ps-FWHM) (Pulse picker)
- Beam Position Stabilizer
- Two-pass Nd:YAG Amplifier x 2
- Nonlinear Crystals (SHG & FHG)

The AOM is key component for multi-bunch UV-laser generation

Compensation of Gain Drop

Stored energy in Nd:YAG amplifier rapidly decrease when amplified micro-pulse energy is high.
 → High gain at the beginning of macro-pulse and low gain at the end.

The gain drop can be compensated by modulating input laser pulse by AOM.

→ Weak input laser pulse at the beginning of macro-pulse and strong at the end.

Multi-bunch UV-laser pulse with rectangular macro-pulse structure can be realized.

Reduction of Micro-pulse Frequency

In case of e-beam repetition rate = 89.25 MHz

Three independent optical pulses can be amplified.

→ Use AOM to reduce micro-pulse frequency from 89.25 to 29.75 MHz.

When macro-pulse duration is 5 μ s,

89.25 MHz operation

Micro-pulse energy : ~ 4 µJ

29.75 MHz operation

Micro-pulse energy : ~ 20 µJ

Cathode & RF Gun

Cathode

LaB₆ Single Crystal (100) Surface, 2 mm ϕ

RF Gun : side coupled 4.5-cell, S-band

Cathode Temperature

- Thermionic : 1700 deg. C
- Photocathode : 1100 deg. C
 →Negligible thermal emission

Laser injection from 70 deg. Polarization was adjusted to have highest QE. The measured highest QE was ~0.01%.

Multi-bunch Photoelectron Beam Generation

- Flat top Macro-pulse generation with 4- μ s macro-pulse duration.
- Bunch charge at beam dump was measured by Faraday Cup.
 - Thermionic : $< 50 \text{ pC} \rightarrow 3 \text{ times}$
 - Photocathode : ~ 150 pC

First Lasing with Photocathode Operation

Starting time of e-beam macro-pulse

Micro-pulse Energy Evaluation

Thermionic Operation : 13 mJ / (2856 MHz x 2 μ s) = 2 μ J Photocathode Operation 0.8 mJ / (29.75 MHz x 2 μ s) = 13 μ J \sim 6.5 times

Detuning Curve

Wider detuning width → Much Higher Gain

Summary

 First Lasing of KU-FEL with photocathode operation of LaB₆ cathode has been achieved.

 Bunch charge @undulator : Thermionic < 50 pC → Photocathode 150 pC

• Micro-pulse Energy of FEL : 2 μ J \rightarrow 13 μ J

• Wider detuning width imply higher gain.

Future Work

- Measurement of basic properties of FEL under the photocathode operation
 - Spectrum
 - Tunable range
 - Temporal structure
- Optimization of coupling hole of FEL optical cavity
- Apply to user experiment require higher peak power of FEL

Acknowledgement

This work was supported by the "Joint Usage/Research Program on Zero-Emission Energy Research, Institute of Advanced Energy, Kyoto University

This work was conducted under the Collaboration Program of the Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University

Thank you for your attention !

