37th International Free Electron Laser Conference

Direct observation of bond formation in solution with femtosecond X-ray scattering

2015. 8. 28 Kim, Kyung Hwan

Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS)

Contents

Introduction TRXSS method – How to measure structural changes in solution

2. Application

Tight Au-Au bond formation in solution

Scattering from a molecule

X-ray scattering is one of the most useful technique for revealing structure of sample.

Scattering from solution

Too many atomic pairs. Impossible to analyze.

All (known or unknown) backgrounds are subtracted.

Example: I₂

The **bondlength** of I₂ molecule (2.67 Å) is **measured** with **high accuracy**.

Example: I₂

$$q\Delta S(q)_{theory} = 2S(q)_{\rm I} - S(q)_{\rm I_2} = F_{\rm I}(q)^2 \frac{\sin(qr)}{qr} \quad (r = 2.67 \text{ Å})$$

$$r\Delta R(r,t) = \frac{1}{2\pi^2} \int_0^\infty q\Delta S(q,t) \sin(qr) \exp(-q^2 \alpha) dq$$

K. H. Kim et al., Phys.Chem.Chem.Phys., **17**, 8633-8637 (2015).

Multiple number of atom pairs

Synchrotron Sources

ESRF

- Location : Grenoble, France
- Beamline : ID09B
- X-ray : 100ps, 18keV, 1.1X10⁹ photon/pulse
- Coworker : M. Wulff

- Location : Argon, USA
- Beamline : 14-ID
- X-ray : 100ps, 12keV, ~10⁹ photon/pulse
- Coworker : K. Moffat

KEK

- Location : Tskuba, Japan
- Beamline : NW14
- X-ray : 100ps, 15keV, ~10⁹ photon/pulse
- Coworker : S. Adachi

Applications

JACS, 130, 5834-5835 (2008)

C₂H₄I₂

 Science, 309, 1223-1227 (2005)
 ACIE, 47, 5550-5553 (2008)
 JACS, 129, 13584

 JPCA 1209 10451-10458 (2005)
 JACS, 132, 2600-2607 (2010)
 JACS, 129, 13584

 JCP, 124, 124504 (2006)
 JACS, 132, 2600-2607 (2010)
 13591 (2007)

Ru₃(CO)₁₂

CBr₄

JCP, 124, 034501 (2006) PCCP, 17, 8633-8637 (2015)

ACIE, 47, 1047-1050 (2008)

HgI₂ PNAS, 103, 9410-9415 (2006)

L₃ PRL, 110, 165505 (2013) ChemPhysChem, 14, 3687-3697 (2013)

Femtosecond TRXSS using X-ray free electron laser

	3 rd generation	XFEL
Temporal duration	100 ps	~ 0.1 ps
Photons/pulse	< 10 ⁹	~ 10 ¹²

• Real-time tracking of bondmaking process.

Timescale of ultrafast sciences

Elementary steps of chemical reactions

Unimolecular & Bimolecular reaction

$A \rightarrow B + C$: Bond-breaking

$A + B \rightarrow C$: Bond-making

Real-time tracking of "bond-breaking" processes in solution

hv

Ihee et al., Science, 309, 1223 (2005).

Bond-breaking processes can be synchronized with laser excitation. Relatively easy to follow with TR techniques.

Real-time tracking of "bond-making" processes in solution

Bond-making process >> Diffusion rate Hard to monitor ultrafast bond-making process with TR techniques.

hv

Real-time tracking of "bond-making" processes in solution

hv

Bond-making processes can be synchronized with laser excitation if the reaction parties are prepared in the same cage. ($[Au(CN)_2]_3$ system)

Aurophilic interaction of Gold

Special van der Waals interaction induced by relativistic effect.

 Longer Au-Au distance (3.0 ~ 3.6 Å) than covalent bond (~2.7 Å).

Laser induced bond formation

Ganglong Cui et. al., Angew. Chem. Int. Ed., 52, 10281 –10285 (2013).

Lack of structural sensitivity of previous study

Controversy over transient structure

135, 538 (2013)

Bent-to-linear relaxation occur within 500 fs.

Ganglong Cui *et al., Angew. Chem. Int. Ed.,* **52**, 10281 (2013).

Experimental scheme

Typical TRXL experimental scheme was used. We covered from -800 fs to 1 μs time range. (SACLA + KEK)

Experimental Conditions

X-ray 15 keV Pulse duration: <100 fs (SACLA), ~ 100 ps (KEK). Laser 267 nm

Pulse duration: ~100 fs

300 mM Au(CN)₂ in water.

Sample

XFEL + Synchrotron scheme

100 XFEL) ps Synchrotron
 100 fs time resolution Delay stage (up to few ns) Scattering pattern often suffer from artifacts. 	 ~100 ps time resolution Electronical timing control Scattering patterns are very stable and reliable.
 Entire reaction process can be covered by using XFEL + Synchrotron scheme. TRXL signals are highly reproducible and independent of the facility. 	a (b)SYD (b)SYD (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)

TRXL signal from –800 fs to 1μ s

Clear oscillatory features which varies with time. High S/N.

TRXL data analysis scheme

TRXL data analysis scheme R_{23} R_{12} R₁₃ R_{13} 4 r (Å) 2 3 5 6 7 8 T. R₁₂ R_{23} R_{13}

Time-dependent RDFs

- The peaks in RDFs directly represent the Au-Au distances.
- Extract kinetics and speciesassociated RDFs.

Concentration changes

1.6 ps (S_1 to T_1), **3 ns** (T_1 to tetramer), **100 ns** (tetramer to S_0)

Timescales are well matched with previous studies.

Species-associated RDFs: S₀

S₀: Loosely bounded (~3.6 Å), bent structure ($R_{12}+R_{23} > R_{13}$).

Species-associated RDFs: S₁

S₁: **covalent bond is** formed (~2.8 Å), **linear structure** (R₁₂+R₂₃ = R₁₃), formed within ~500 fs

Species-associated RDFs: T₁

T₁: **shorter** bond lengths **linear** structure ($R_{12}+R_{23} = R_{13}$), formed with a time constant of 1.6 ps

Species-associated RDFs: tetramer

Tetramer:
 addition of a
 monomer,
 formed with a time
 constant of 3 ns

Lack of structural sensitivity of previous study

Controversy over transient structure

Au-Au Au-Au -- --3.3 170 3.2 160 150 160 400-ND-US 140 160 (Degree) Au-Au Bond (Ångstrom) 3.1 2.9 2.8 130 2.7 2.6 4000 500 1000 1500 2000 2500 3000 3500 Time (fs)

180

Bent-to-linear relaxation occur within 500 fs.

Ganglong Cui *et al., Angew. Chem. Int. Ed.,* **52**, 10281 (2013).

Bent? Linear?

 Linear structure fits the experimental curve much better both in r and q space.

Summary: Molecular movie

K.H. Kim *et al., Nature,* **518**, 385 (2015).

Summary

Reaction progress

Structural parameters

Species	R ₁₂	R ₂₃	R ₁₃	R ₃₄
S ₀	3.87 (± 0.04) Å	3.30 (± 0.06) Å	5.56 (± 0.11) Å	
S ₁	2.82 (± 0.04) Å	2.81 (± 0.03) Å	5.63 (± 0.09) Å	
T ₁	2.71 (± 0.03) Å	2.70 (± 0.05) Å	5.41 (± 0.11) Å	
Tetramer	2.89 (± 0.06) Å	2.62 (± 0.06) Å		2.88 (± 0.04) Å

K.H. Kim *et al., Nature,* **518**, 385 (2015).

Conclusion

We demonstrated the capability of femtosecond TRXL by elucidating the overall mechanism for the formation of Au-Au covalent bonds in the $[Au(CN)_2]_3$ complex with rich structural information. Femtosecond TRXL offers an opportunity of visualizing the entire process of photoinduced reactions in real time and real space.

Acknowledgement

Center for Nanomaterials and Chemical Reactions

Prof. Hyotcherl Ihee Jong Goo Kim Key Young Oang Tae Wu Kim Hosung Ki Junbeom Jo Sungjun Park

KEK

Prof. Shin-ichi Adachi Prof. Shunsuke Nozawa Dr. Tokushi Sato

Inha University

Prof. Jeongho Kim

The Catholic University

Prof. Joonghan Kim

SACLA

Prof. Tetsuya Ishikawa Prof. Changyong Song Dr. Makina Yabashi Dr. Tokushi Sato Dr. Takahiro Sato Dr. Kanade Ogawa Dr. Tadashi Togashi Dr. Kensuke Tono

Funding

This work was supported by IBS-R004-G2

Thank you.