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Abstract

New four-dimensional models of free electron lasers

(FELs) are described, for both amplifier and oscillator con-

figurations. Model validation and benchmarking results are

shown, including comparisons to theoretical formulas and

experiments.

INTRODUCTION

Over the past 25 years at the Naval Postgraduate School,

we have developed a suite of computer programs to model

free electron lasers [1, 2]. We have separate programs for

different types of FELs (i.e., single-pass amplifiers or multi-

pass oscillators) under various conditions (i.e., short or long

pulses), with graphics optimized to understand the results

for each type of FEL.

Our programs can be classified according to the number

of dimensions in the model. The one-dimensional (1D) and

two-dimensional (2D) programs run very rapidly on lap-

top and desktop computers. The 1D programs are helpful

in visually understanding basic principles such as electron

bunching, optical gain and saturation, and in many cases give

good descriptions of FEL performance. The 2D programs

are useful when longitudinal effects such as pulse slippage

and desynchronism are dominant. The three-dimensional

(3D) and four-dimensional (4D) programs typically run on

multi-core or cluster computers, and are useful when trans-

verse effects such as optical mode distortion are significant.

Each of the programs produces extensive graphical output

to enhance physical understanding and reveal trends.

This paper describes the new 4D models that we have

developed over the past several years, taking advantage of

advances in computer technology that enable these programs

to run efficiently on readily available hardware such as Linux

clusters. We also present results showing how we have vali-

dated and benchmarked the new models.

DESCRIPTION OF THE MODELS

Dimensionless Parameters

All of our models use dimensionless parameters that sim-

plify the equations, provide intuitive insight, and generalize

the results [3]. Longitudinal coordinates are normalized

to the undulator length L, and transverse coordinates are

normalized to a characteristic optical mode radius
√

Lλ/π,

where λ is the optical wavelength. The dimensionless time

is defined by τ = ct/L where c is the speed of light.

Phase space coordinates follow the microscopic bunching

of the electrons on the scale of an optical wavelength. The
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electron phase is defined as ζ = (k + k0)z − ωt where

k = 2π/λ is the optical wavenumber, k0 = 2π/λ0 is the

undulator wavenumber, λ0 is the undulator period, ω =

kc is the optical frequency, and z is the electron’s position

along the undulator axis at time t. The dimensionless phase

velocity then becomes ν = dζ/dτ = L[(k + k0) βz − k]

where βz = vz/c.

The dimensionless undulator parameter is given by K =

eBλ0/2πmc2, where B is the rms field strength, e is the

electron charge and m is the electron mass (in cgs units). For

most FELs, K ∼ 1.

The dimensionless optical field amplitude is defined as

|a | = 4πNeK LE/γ2mc2, where N is the number of undu-

lator periods, E is the electric field amplitude, and γ is the

Lorentz factor. When |a | ≪ π the optical fields are weak

and there is very little electron bunching. When |a | ∼ π,
there can be significant electron bunching, producing growth

of the optical fields. When |a | ≫ π, strong optical fields

can cause many of the electrons to become trapped in closed

phase space orbits, leading to the onset of saturation.

The optical fields are driven by the dimensionless current

density, j = 8N (eπK L)2ρ/γ3mc2, where ρ is the particle

density. When j . 1, the weak-field gain is low, but when

j ≫ 1, the FEL can have high gain. A typical FEL oscil-

lator has j ∼ 100 and moderate weak-field gain. An FEL

amplifier, with a much longer undulator, can have j ∼ 105

and very high gain over a single pass.

Model Assumptions and Methods

The first 4D model that we developed in the early 1990s as-

sumed the electron beam is well inside the optical mode [4].

In that case, all of the electrons in each longitudinal slice of

the pulse interact with the same optical field, so the micro-

scopic bunching is uniform across each slice. This assump-

tion significantly reduces the computational and memory

requirements for the simulation; for instance, instead of large

3D arrays for the electron phase ζ and phase velocity ν, only

1D arrays are required.

Our new 4D models are more general, including the full

evolution in (x, y, z, t) of the electrons and optical pulses.

The programs are parallelized, with each process follow-

ing an optical wavefront a(x, y) and sample electrons for

a single longitudinal slice of the optical pulse a(z) along

the undulator axis. In each slice, the optical wavefront is

represented by the field amplitude and phase over a rectan-

gular grid, and approximately 30,000 sample electrons are

assigned transverse phase space coordinates (x, θx , y, θy ) in

addition to their longitudinal phase space coordinates (ζ, ν).

To reduce shot noise effects, a quiet start algorithm [5] is

used to assign the initial phase space coordinates, taking
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into account the emittance and energy spread of the electron

beam. The effective charge corresponding to each sample

electron is weighted by the current density profile of the

electron pulse.

The number of transverse modes included in our models

is limited only by the number of transverse grid points; typi-

cally a 300 × 300 grid is adequate, but in some cases a 1000

× 1000 grid is needed. The number of longitudinal slices

determines the number of longitudinal modes; typically we

use 100 slices, but in some cases several hundred slices

are needed. The optical wavelength is allowed to evolve

self-consistently.

On each time step, the electrons advance in phase space

according to the relativistic Lorentz force equation, using

a fourth-order Runge-Kutta method. Their transverse co-

ordinates are updated according to the undulator betatron

focusing. The undulator can have a step or linear taper start-

ing at an arbitrary position; the Lorentz force equation is

adjusted accordingly. The optical field evolves according

to the parabolic wave equation, using a Fourier transform

method. Electrons are continually passed from one optical

slice to the next to account for pulse slippage. An impor-

tant feature of our models is that they do not assume axial

symmetry, so they can include arbitrary shifts and tilts of

the electron beam and cavity mirrors with respect to the

undulator axis to study the effects of misalignments on FEL

performance [6].

A single-pass amplifier model was developed first. The

initial optical field can be specified in terms of the seed laser

parameters, or it can develop from spontaneous emission

to simulate a SASE FEL. The initial electron beam can

be described by statistical quantities such as the spread in

positions and velocities along each dimension, or a particle

tracking code such as PARMELA [7] or GPT [8] can be used

to produce the initial electron distribution. Graphical output

from the simulation includes the evolution of the optical

power and gain along the undulator, the electron phase space,

slices through the optical field in each dimension, the optical

power spectrum, and a modal decomposition of the final

optical field.

Next we developed multi-pass oscillator simulations. A

transformation matrix is used to represent each mirror, with

the radius of curvature determined by the cavity length and

the dimensionless Rayleigh range. One of the mirrors can

be partially transparent, or it can use hole out-coupling. In-

cluding mirrors within the program allows it run efficiently

compared to other approaches that require exchanging the

wavefronts with an external optics code on each pass. An

expanding coordinate grid outside of the undulator [9] al-

lows for the significant diffraction that occurs in a typical

FEL oscillator, with a significant reduction in computation

time and memory requirements.

The first oscillator model that we developed uses periodic

boundary conditions, with the assumption that the pulse

length is much greater than the slippage distance (Nλ). The

results of this model depend mainly on three key parameters:

the dimensionless current density j, the cavity quality factor,

and the Rayleigh length. This model is useful for studying

effects such as coherence evolution, the trapped-particle

instability, the development of sidebands, and limit-cycle

behavior.

We have recently developed another oscillator model that

incorporates short pulses (comparable to the slippage dis-

tance). In this model, the longitudinal window is wide

enough to contain the full extent of the electron and op-

tical pulses as they evolve through the undulator, so it does

not require periodic boundary conditions. Desynchronism

is implemented by a steadily increasing shift of the optical

pulse with respect to the electron pulse on each pass.

Graphical Output

To aid in analyzing the large amounts of data, our 4D sim-

ulations produce extensive graphical output. Figure 1 shows

an example of simulation output for the Jefferson Laboratory

infrared FEL oscillator [10]. The green shaded window at

the top of the figure lists the dimensionless parameters used

in the simulation. Near the middle on the left side of the fig-

ure is a plot labeled a(x, 0, 0) which shows the amplitude of

the optical field (blue) versus x at y = z = 0 at the beginning

of the first pass; the narrower electron beam is superimposed

in red. Directly above that is an intensity plot showing the

evolution of this optical field profile over n = 300 passes

through the undulator; here light blue corresponds to the

largest optical field amplitude, and dark blue corresponds

to zero field. The white lines indicate the 1/e value of the

field amplitude, and the red dots indicate the 1/e value of the

electron beam current at each pass. In the upper left is the

final optical field profile; notice that the peak value, shown

in the upper right corner of each plot, has increased from 6.7

to 26.6. Next to those plots is a similar series of plots, now

showing the evolution of an optical field slice versus y at

x = z = 0. These are virtually identical to the previous plots

because the input parameters for this example had azimuthal

symmetry (although our 4D model does not require that).

The next column of plots, labeled a(0, 0, z), show the

evolution of the electron and optical pulses versus z, at x =

y = 0. The initial electron pulse (red) starts out slightly

ahead of the optical pulse (blue), but ends up trailing the

optical pulse by the slippage distance Nλ at the end of each

pass. The z coordinate in these plots is normalized to the

slippage distance. The evolution of the optical pulse over

many passes depends on the interaction between the electron

and optical pulses, and the desynchronism (or “detuning”)

of the optical cavity [1].

In the upper right is a series of plots labeled P(0,0, ν),

showing the evolution of the optical power spectrum. This is

obtained by taking the Fourier transform of the optical power

P(0,0, z) = |a(0,0, z) |2 at x = y = 0, as representative

of the pulse spectrum. Notice that the power spectrum is

initially peaked near resonance, ν = 0, but shifts to a larger

value ν ≈ 8 after n ≈ 200 passes. This corresponds to a

shift in the lasing wavelength of ∆λ/λ = ∆ν/2πN ≈ 4%

as the FEL evolves from weak fields to saturation in strong
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Figure 1: Output from a 4D simulation of the Jefferson Lab infrared FEL oscillator. The various plots are described in the

text.
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fields, a well-known effect predicted by FEL theory [1] and

observed in many experiments.

In the lower half of the figure, the plot on the left labeled

f (ν,n) shows the evolution of the electron phase velocity

distribution. Notice that the electrons initially have a rather

narrow phase velocity distribution due only to emittance

and energy spread, but as they interact with the growing

optical field in the undulator over many passes they develop

a broader distribution in phase velocities. Next to that plot

shows the final distribution of the electrons in phase space

(ζ, ν) at z = 0, indicating good bunching of the electron

beam. In the bottom left of the figure are two plots show-

ing the evolution of the optical power P(n) and gain G(n).

Notice that the optical power saturates at a fixed value after

n ≈ 200 passes.

On the bottom of the figure near the center is a plot labeled

|c(m,p) |, which depicts the modal composition of the optical

wavefront, using a color scale to represent the values of

the coefficients of the Hermite-Gaussian cavity modes. In

this case, a light blue square at p = m = 0 indicates the

wavefront is primarily in the fundamental (0,0) mode. This

is confirmed by the four plots in the lower right of the figure,

which show a nearly Gaussian optical wavefront |a(x, y,0|
at the left (τ = −9) and right (τ = 10) mirrors, in both 2D

and 3D representations.

VALIDATION AND BENCHMARKING OF

THE MODELS

First we will compare results from our simulations to

well-known theoretical formulas. These formulas typically

assume idealized cases, but they are useful to give rough ap-

proximations of FEL performance, and with careful choices

of parameters they can be used to validate our models. We

will also provide benchmarks by comparing simulation pre-

dictions to results from FEL experiments.

Weak-field Gain

In weak optical fields (|a | ≪ π) and low current density

( j . 1), the single-pass gain can be expressed as [1]

G = j *
,

2 − 2 cos ν0 − ν0 sin ν0

ν3
0

+
-
. (1)

This formula assumes all of the electrons are injected

with the same initial electron phase velocity ν0 (i.e., no emit-

tance or energy spread). It also assumes perfect overlap

between the electron and optical beams, and it ignores ef-

fects such as diffraction, pulse slippage, and optical mode

distortion. However, we can compare it to the results from

our 4D amplifier model if we choose appropriate initial con-

ditions. The electron and optical beams are given identical

top-hat profiles with a large radius to minimize diffraction.

Long, flat pulses are used to remove slippage effects. The

resulting weak-field gain spectrum for j = 1 is shown in

Fig. 2. The blue theory line corresponds to Eq. 1, and the

red dots correspond to results from the 4D amplifier model.

The results show excellent agreement between the theory

Figure 2: Weak field gain spectrum: single-pass gain vs.

initial phase velocity ν0 for a low-gain FEL ( j = 1).

Figure 3: Weak field gain spectrum: single-pass gain vs.

initial phase velocity ν0 for a high-gain FEL ( j = 100).

and the model for this idealized case. The slight differences

are expected since Eq. 1 does not allow the optical fields to

evolve self-consistently.

For a high-gain FEL ( j ≫ 1), Eq. 1 is no longer valid.

Instead, the FEL integral equation described below can be

used to estimate the gain. Now the gain spectrum is broader

and more symmetric with a peak near resonance, ν0 ≈ 0,

as shown in Fig. 3. Here we have used j = 100; the blue

theory line was obtained using the FEL integral equation,

and the red dots are from our 4D amplifier model, with the

same idealized conditions as before. Again, there is good

agreement between the model and the theory.

For a high-gain FEL at resonance, ν0 = 0, the weak-field

gain can be approximated as [1]

G ≈
1

9
e( j/2)1/3

√
3 (2)

Figure 4 shows results for gain versus current density j

for our 4D model (red dots) compared to Eq. 2 (blue line).

WEP008 Proceedings of FEL2015, Daejeon, Korea

ISBN 978-3-95450-134-2

610C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

FEL Theory



Figure 4: Weak-field gain vs. dimensionless current density

j for high-gain FELs ( j ≫ 1) at resonance (ν = 0).

There is excellent agreement between the model and the

theory over about 10 orders of magnitude change in gain

(note the logarithmic scale on each axis).

The previous results all assume an idealized electron

beam, with no energy spread or emittance. The effects of a

realistic beam can be incorporated into the theory using the

FEL integral equation [11,12], which describes the evolution

of the dimensionless, complex optical field,

da

dτ
=

i j

2

∫ τ

0

τ′F (τ′)e−iν0τ
′
a(τ − τ′)dτ′ (3)

where F (τ′) =
∫

f (q)e−iqτ
′
dq is the characteristic function

of the distribution f (q) of electron phase velocities νi =

ν0 + q about ν0 and
∫

f (q)dq = 1.

For example, if an electron beam has a Gaussian spread

of energies, it will have a corresponding distribution in

phase velocities f (q) = exp (−q2/2σ2)/
√

2πσ where σ =

4πN∆γ/γ is the standard deviation. For a low-gain FEL, it

is clear from Fig. 2 that when the spread in phase velocities

is on the order of π, there will be significant gain degrada-

tion. Figure 5 shows the effect of increasing electron energy

spread on FEL gain. The blue line corresponds to Eq. 3 and

the red dots are results from our 4D model. Again, we see

excellent agreement between the model and the theory.

Strong-field Gain

In strong optical fields, |a | ≫ π, an analytic formula

for gain is not available, but features of saturation can be

explored and compared to a 1D model. Figure 6 shows

results for 4D simulations of single-pass gain versus initial

phase velocity ν0 and optical field amplitude a0. As the FEL

evolves from weak fields a0 ≈ 0 up to moderately strong

fields a0 = 20, the peak gain decreases from G ≈ 13% to

G ≈ 3%, the gain spectrum G(ν0) becomes broader and the

peak shifts away from resonance, from ν0 ≈ 3 to ν0 ≈ 5.

Simulations with our 1D model produce a nearly identical

plot [1].

Figure 5: Weak-field gain vs. the rms spread σ in phase

velocities due to an energy spread for a low-gain FEL ( j = 1).

Figure 6: Results for 4D simulations of single-pass gain G

vs. initial phase velocity ν0 and optical field amplitude a0

for a low-gain FEL ( j = 1).

Extraction

The FEL extraction η is defined as the ratio of the out-

put optical power to the input electron beam power. Our

simulations predict extraction by first determining the av-

erage change in phase velocity 〈∆ν〉 of the sample elec-

trons, then the corresponding extraction is calculated using

η = 〈∆ν〉/4πN .

A low-gain FEL will saturate when the optical field

amplitude reaches |a | ≈ 4π2. In that case, the trapped

electrons will undergo an average phase velocity shift of

〈∆ν〉 ≈ 2π, which gives an approximate theoretical extrac-

tion of ηth ≈ 1/2N . Indeed, that is what our simulations

invariable obtain for low-gain FELs, so long as the gain is

above threshold. For example, the Jefferson Lab FEL os-

cillator has N = 30 periods, so the above formula predicts

an extraction of ηth ≈ 1.67%. The actual experiment ob-

tained extractions between 1.5% and 1.7% [10]. In our 4D

simulation of this FEL shown in Fig. 1, the power evolu-

tion plot P(n) near the lower left indicates saturation after

n = 200 passes. The final phase velocity distribution f (ν,n)
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Figure 7: Extraction η vs. dimensionless current density j

for high-gain FELs ( j ≫ 1) at resonance (ν = 0).

shown above it yields an extraction of η = 1.63%, in good

agreement with the theory formula and the experimental

results.

A high-gain FEL will saturate at a larger optical field

amplitude |a | ≈ 2( j/2)2/3 [1], causing the trapped elec-

trons to undergo an average phase velocity shift of 〈∆ν〉 ≈
2
√

2( j/2)1/3. Assuming half of the electrons are trapped,

the resulting theoretical extraction is

η j ≈
2
√

2( j/2)1/3

8πN
. (4)

Figure 7 shows results for extraction versus current density

for our 4D model (red dots) compared to Eq. 4 (blue line).

There is good agreement between the model and the theory

over a couple orders of magnitude change of the current

density j. The slight differences at large j may be due to the

assumption in Eq. 4 that half of the electrons are trapped.

Tapered Undulator

As an FEL approaches saturation, the electrons lose en-

ergy and are no longer in resonance with the optical field,

thus reducing energy exchange. To further enhance extrac-

tion, the undulator can be tapered to restore resonance [13].

Typically this is done by a linear change in the undulator

gap, resulting in a linear slope of the on-axis undulator field,

∆B/B. This produces an effective acceleration of the elec-

tron phase velocity [1],

δ = −4πN

(

K2

1 + K2

) (

∆B

B

) (

1

1 − τs

)

, (5)

where τs is the dimensionless location of the taper start along

the undulator axis (recall τ = 1 corresponds to the end of

the undulator). If half of the electrons remain trapped, the

resulting extraction can be estimated as ηδ ≈ δ(1−τs )/8πN .

For example, the Brookhaven National Laboratory (BNL)

seeded FEL amplifier had N = 256 periods and an undulator

parameter of K = 0.78 , with a 4% field taper along the the

last 2.5m of the 10m long undulator [14]. The corresponding

phase acceleration is thus δ ≈ 63π starting at τs = 0.75,

and the estimated extraction is ηδ ≈ 0.74%. The actual

experiment obtained an extraction of η ≈ 0.8%.

Figure 8 shows the output from a 4D simulation of the

BNL FEL amplifier. The various plots shown in this figure

are similar to those in Fig. 1, except the evolution plots are

now for a single pass through the undulator from τ = 0 to

τ = 1. Since this is a high-gain FEL ( j = 7782), the optical

beam is “guided” along the axis near the electron beam,

as seen in the evolution of the transverse profiles a(x,0,0)

and a(0, y,0) near the upper left of the figure. Beneath

those plots, the evolution of the electron phase velocity,

f (ν, τ) shows the phase acceleration due to taper beginning

at τs = 0.75. The final phase space picture next to that

indicates about half of the electrons remain trapped. The

power and gain evolution plots in the lower left reveal a

plateau at saturation τ ≈ 0.75, and then the power and

gain continue to increase as the taper takes effect. Next to

those plots, the modal composition plot |c(m,n) | indicate

the presence of numerous higher-order modes, as expected

in a high-gain FEL. In this case, since there is no optical

cavity, the basis set for the modal decomposition assumes

the seed laser is in the fundamental (0,0) Hermite-Gaussian

mode. Higher-order mode content is also observed in the

strongly-peaked optical wavefront a(x, y,0) shown in the

lower right at τ = 1. The simulation obtained an extraction

of η = 0.84%, in good agreement with the theory formula

and the experimental result.

CONCLUSION

Our new 4D models of FEL amplifiers and oscillators

have been validated and benchmarked by comparison to the-

oretical formulas and experimental results. We have demon-

strated excellent agreement between our simulations and

the theory formulas for various regimes of FEL operation,

and we have also shown good agreement with experimen-

tal results. We are now using the new 4D models to study

the interaction between transverse and longitudinal effects,

such as how diffraction affects desynchronism in short-pulse

FELs.
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Figure 8: Output from a 4D simulation of the Brookhaven National Laboratory seeded FEL amplifier.
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