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Abstract 
While FEL technology has reached the EUV and X-ray 

regime at existing machines such as LCLS and SACLA, 
the scale of these projects is often impractical for research 
and industrial applications. Sub-millimeter period 
undulators can reduce the size of a high-gain EUV FEL, 
but will impose stringent conditions on the electron beam. 
In particular, a high-gain EUV FEL based on undulators 
with a sub-millimeter period [1] will require electron 
beam currents upwards of 1 kA at energies below 100 
MeV. Coupled with the small gap of such undulators and 
their low undulator strengths, K < 0.1, these beam 
parameters bring longitudinal space-charge effects to the 
foreground of the FEL process. When the wavelength of 
plasma oscillations in the electron beam becomes 
comparable to the gain-length, the 1D theoretical FEL 
model transitions from the Compton to the Raman limit 
[2]. In this work, we investigate the behavior of the FEL’s 
gain-length and efficiency in these two limits. The 
starting point for the analysis was the one-dimensional 
FEL theory including space-charge forces. The derived 
results were compared to numerical results of Genesis 1.3 
simulations. This theoretical model predicts that in the 
Raman limit, the gain-length scales as the beam current to 
the -1/4th power while the efficiency grows as the square 
root of the beam current. 

INTRODUCTION 
The attractiveness of sub-millimeter undulators is the 

ability to produce EUV and X-ray FELs in a compact 
space. A 100 MeV electron beam is easily obtainable in 
10 meters with current acceleration technology and 
produces EUV light in an undulator of 800 ݉ߤ period. A 
high-gain FEL requires beam currents in the kA scale in 
order to achieve saturation. The small aperture of such 
micro-undulators drives the transverse size of the beam to 
the 10 ݉ߤ scale while their small undulator strength, 
௨ௗܭ ൎ 0.01, reduces the coupling of the beam and 
radiation. All these factors contribute to bring 
longitudinal space-charge effects to the foreground of 
compact FELs based on micro-undulators. 

The typical FEL operation regime is the Compton 
regime, in which space charge is negligible. Marcus et al. 
[3] have shown that longitudinal space-charge increases 
the gain-length and provided a Ming Xie type of fit to the 
gain. However, if the longitudinal space-charge is strong 
enough, it can no longer be treated as only a correction to 
the Compton regime. Gover and Sprangle [2] treat the 
limit in which space-charge is dominant as a separate FEL 
regime. The transition into the Raman regime can be 
quantified as the set of undulator and beam parameters 
such that: 2݇ீܮ    .ߨ

We will show that in the Raman limit, the gain-length 
and efficiency of the FEL change their scaling with the 
beam current from the typical scaling in the Compton 
regime. The gain-length tapers off to a ܫ

ିଵ/ସ scaling at 
very high beam currents, while the efficiency is boosted 
to a ܫ

ଵ/ଶ scaling. The Raman limit presents a new mode of 
operation of the FEL. We investigate the behavior of gain 
and efficiency in the Raman limit. The analysis is carried 
out solely through the one-dimensional FEL theory in 
order to isolate the effects of longitudinal space-charge. 
To study FEL efficiency we begin by providing insight 
into the conditions for saturation. The 1D FEL theory 
yields analytic solutions for the gain, whose validity 
extends to the Compton and Raman limits. The efficiency 
is deduced by finding the saturation power that results for 
a given gain and saturation distance. The analytic 
expressions are then compared to simulations. A simple 
numerical approach was treated by a linear finite-
difference numerical integration of the one-dimensional 
FEL equations with and without the space-charge terms. 
As a third consistency check, genesis 1.3 simulations 
were implemented. Since genesis 1.3 includes three-
dimensional effects, the beam parameters for the 
simulated beams were chosen so as to minimize the effect 
of 3D space-charge, diffraction, and emittance. 

1-D FEL THEORY 
Longitudinal space charge is quantified by the 

relativistic plasma wave-number, and its effects on the 
FEL performance can be studied in the 1-D limit. The 
relativistic plasma wave-number is defined as: 

݇ ൌ ඨ
ܫ2

௫ଶߪଷߛܫ
 

The Alfein current is, ܫ ൌ  ݉ܿଷ/݁. The beamߝߨ4
current, energy, and transverse size are ܫ, ,ߛ  ,௫ߪ
respectively. The transition into the Raman regime can be 
quantified as the set of undulator and beam parameters 
such that:  

2݇ீܮ   ߨ

The gain-length is defined through the solutions of the 
third-order ODE for the electric field. Assuming the field 
has the form, ܧ෨ሺݖሻ~exp	ሺݖߙሻ, then the root with a positive 
real part defines the gain-length as: 

ଷߙ	  ݅4݇௨ߙଶ  ൫݇ଶ െ 4݇௨ଶߟଶ൯ߙ െ ݅8݇௨ଷߩଷ ൌ 0 

→ ீܮ ൌ
1

2Ըሾߙାሿ
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The undulator wavenumber is, ݇௨, the Pierce parameter 
is ߩ, and the detuning from resonance is ߟ. For 
completeness we quote the Pierce parameter: 

ߩ ൌ ቈ
ሿܬܬሾܭ

4√2

௭ߛ
ߛ
݇
݇௨

ଶ/ଷ

 

The following definitions are in order: ݇௨ is the 
undulator wave-number, the peak magnetic field is ܤ௨, so 
that the undulator parameter is ܭ ൌ  ሿܬܬ௨/݉ܿ݇௨, and ሾܤ݁
is a constant on the order of unity that describes the 
coupling between the elctron motion and radiation.  

Now we take the two limits in the cubic equation for 
the 1D FEL gain. In the Compton limit, the case with no 
space-charge, ݇ ൌ 0, we obtain the usual definition of 
the gain-length: 

ீܮ
 ൌ

1

2√3݇௨ߩ
∝ ܫ

ିଵ/ଷ 

When ݇ can no longer be neglected in the cubic 
equation, the maximum gain is shifted to a detuning of, 
௫ߟ ൌ ݇/2݇௨, and the gain-length’s dependence on 
beam current shifts to: 

ீܮ
ோ ∝ ܫ

ିଵ/ସ 

Efficiency of an FEL is defined as the power extracted 
from the electron beam. If the system's energy is to be 
conserved, the extracted beam energy has to be fed into 
the energy of the electromagnetic field. Therefore, we can 
write the following definition for FEL efficiency: 

ܳிா ൌ
Δܷ
ܷ

ൌ
Δ ܲௗ

ܲௗ
ൌ
݁ሺ ௦ܲ௧ െ ܲሻ

ܫ݉ܿଶߛ
 

Following the arguments presented in [2], we can 
derive the efficiency’s dependence on the beam current 
for the two regimes: 

ܳ
 ∝ ܫ

ଵ ଷ⁄  

ܳ
ோ ∝ ܫ

ଵ ଶ⁄  

To investigate these scaling rules through numerical 
methods, we take the saturation power to be the average 
power of the FEL after the exponential gain has subsided. 
This approach is useful in analysing simulations, but not 
analytically meaningful like the quasi non-linear methods 
implemented by Zhirong et al [4], [5] to study saturation. 
The topic of saturation power is a delicate one and is 
inherently a non-linear effect that is not the topic of this 
work. 

NUMERICAL METHODS 
A 1D solver was implemented to study the behavior of 

the FEL gain-length and saturation power as longitudinal 
space-charge effects become dominant. The coupled FEL 
equations [6] can be numerically integrated by a linear 
integration method as shown below. 

	ߠ
 ൌ ߠ

ିଵ  2݇௨ߟ
ିଵΔݖ	

ߟ
 ൌ ߟ

ିଵ െ
݁

݉ܿଶߛ
ܴ݁ ቈቆ

ሿܬܬሾܭ

ߛ2
෨ିଵܧ

െ
ܿଶߤ݅

߱
ଔଵ
ିଵቇ ݁ఏೕ

షభ
 Δݖ	

෨ܧ ൌ ෨ିଵܧ െ
ሿܬܬሾܭܿߤ

ߛ4
ଔଵ
ିଵΔݖ	

ଔଵ
 ൌ ݆

2
ܰ
݁ݔ൫െ݅ߠ

ିଵ൯

ே

ୀଵ

	

݆ ൌ െ
݁ܿ

ߣ௫ଶߪߨ
ܰ 

 
Space charge in these equations is strictly a longitudinal 

term and is proportional to the first harmonic of the 
electron bunching. Since the Raman limit arises in the 
one-dimensional FEL theory, it should manifest itself in 
the results obtained by “pushing” a particle distribution 
through the above equations. However, because the 
equations are general, they should also reproduce the 
Compton limit. Genesis 1.3 [7] is a 3D FEL code that is 
the standard in the community and we can use it to bench-
mark the 1D code and as a second point of comparison. In 
order to replicate the 1D condition in genesis, we must 
use pancake beams in which longitudinal space-charge is 
dominant. Care was also taken in preparing simulations 
that minimize the effects of diffraction and emittance. 

GAIN AND DETUNING 
Figure 1 shows the gain curves as functions of the 

detuning of the beam from resonance. The blue plot is 
made for a set of parameters that put the FEL in the 
Compton regime, but with enough space-charge for there 
to be detuning. The red plot is obtained for a set of 
parameters that drive the FEL into the Raman regime. 
There is good agreement between the analytic solutions, 
1D model, and genesis1.3. The maximum gain (shortest 
gain-length) for a specific set of beam parameters is 
obtained for an energy detuning that depends on the space 
charge parameter, ߟ௫ ൌ ݇/2݇௨.The close agreement 
between the analytic solutions, the 1D model, and the 
genesis1.3 output for these two vastly different beam 
currents is encouraging and justifies our use of the 1D 
model. 
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Figure 1: FEL gain as a function of the energy detuning of 
the electron beam. The solid line is the solution the cubic 
equation for the electric field, the circles correspond to 1D 
simulations, and the solid diamonds are genesis1.3 
simulations. The left (blue) plot is an FEL in the Compton 
limit and the right (red) is the Raman limit.  

LONGITUDINAL PHASE-SPACE 
Figure 2 shows snapshots of the longitudinal phase-

space of the electrons close to saturation of the high-gain 
FEL in the Compton (blue) and Raman (red) limits. We 
see that as the FEL approaches the point of saturation, the 
electrons lose energy and reach the bottom of their 
synchrotron oscillation inside the pondermotive bucket. In 
the Compton case, the particles continue to spin around 
the center of the bucket as a whole. However, in the 
Raman case, there is a point of charge pile-up that causes 
particles to significantly accelerate and alter their 
trajectories inside the bucket [8]. This prevents the 
synchrotron oscillations to continue undisturbed through 
saturation and smears out the energy distribution. The 
inclusion of longitudinal space-charge disturbs the 
synchrotron oscillations. In the simulations without space-
charge the energy has a better defined oscillation that 
corresponds to the synchrotron frequency. Once space-
charge effects are included, the average energy after 
saturation does not execute a well-defined oscillation. 

 

Figure 2: The longitudinal phase-space at the onset of 
saturation for the Compton (left and blue) and Raman 
(right and red) limits. 

GAIN-LENGTH AND EFFICIENCY 
The final two plots show the scaling of the gain-length 

and efficiency through the Compton and Raman regions 
of operation. To obtain these plots, we transition the FEL 
by varying the beam current while holding the rest of the 
set of undulator and beam parameters constant. Increasing 
the beam current indefinitely is not practical, but serves as 

the most straightforward way to study the Compton-
Raman transition and the FEL’s performance there. The 
current directly increases the space charge’s influence 
and, as seen above, changes the required detuning for 
maximum gain. The plot has Ln-Ln axes so that the slope 
of the lines corresponds to the power of the current 
dependence, ீܮ ∝ ܫ

ఈ → ݈݊ሺீܮሻ ∝ ߙ ⋅ ݈݊ሺܫሻ. The two sets 
of beam parameters for which we bench-marked our code 
with genesis are included (diamonds), and they show 
complete agreement with our 1D code (solid circles) and 
the asymptotic analytic behavior (solid lines).   

Figure 3 confirms the scaling law for the FEL gain-
length for a wide range of beam current values (1kA to 
1.6MA). For low beam currents, the gain-length shortens 
as ܫ

ିଵ/ଷ for an increase in current. Although there is 
detuning and space charge is not negligible in this region, 
this is still the Compton limit. As the beam current is 
increased, the plasma wave-length approaches a gain-
length and begins to strongly influence micro-bunching. 
This increases the gain-length and an increase in current 
no longer translates in as much of a shortening of the 
gain-length as in the Compton limit. In fact, in the Raman 
regime, the gain-length is proportional to, ܫ

ିଵ/ସ.  

 

Figure 3: Gain-length scaling with beam current. Blue is 
the Compton limit and red Raman.  

 
Although the gain-length increases for as more current 

is added, the efficiency of the FEL process begins to 
increase. Gover and Sprangle [2] derive the efficiency in 
the Raman limit to be proportional to the plasma wave-
number, which in turn depends on the square root of the 
beam current, ܳ

ோ ∝ ݇ ∝ ܫ
ଵ/ଶ. The efficiency boost 

stems from the large detuning needed for the space charge 
dominated FELs. Because the electrons are higher off 
resonance initially, once saturation occurs and the particle 
distribution has reached the bottom of its synchrotron 
oscillation in the pondermotive bucket, there has been 
more energy lost to the radiation as compared to a slightly 
detuned beam. Figure 4 confirms the efficiency increases 
from, ܳ

 ∝ ܫ
ଵ/ଷ, to ܳ

ோ ∝ ܫ
ଵ/ଶ, as the FEL transitions 

from the Compton to the Raman regime. 
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Figure 4: Efficiency scaling with beam current. Blue is the 
Compton limit and red Raman.  

DISCUSSION 
Space charge effects in high-gain FELs are usually a 

corrective term that increases the ideal gain-length and 
postpones saturation. We have studied the extreme case of 
a Raman FEL, where longitudinal space charge is 
dominant. Once in the Raman limit, there is a trade-off 
between the gain-length and efficiency of the FEL. We 
have confirmed through simulations that while the gain-
length tapers off to a ܫ

ିଵ/ସ scaling at very high beam 

currents, the efficiency of the FEL is boosted to a ܫ
ଵ/ଶ 

scaling. The onset of saturation has been shown to be 
affected by the space dynamics as shown in the 
longitudinal phase-space plots.  

The push towards sub-millimeter period undulators for 
the construction of compact XFELs requires electron 
beams that have high current and small transverse size at 
energies of hundreds of MeV. These micro-undulators 
have small undulator parameters, ܭ௨ௗ ൎ 0.01, which 
further decreases the coupling of the beam and radiation. 
It is not unreasonable to expect that Raman effects will 
surface in such scenarios.   
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