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Abstract 
An x-ray free electron laser (FEL) is considered by 

many to be a completely classical device. Yet, some have 
investigated operating regimes where the underlying 
physics transitions from a classical to a quantum 
description. Focusing on the collective behaviour of 
electrons, they have introduced symmetrized bunching 
operators and have found an additional energy spread due 
to recoil, mediated through a quantum FEL parameter. 

This work focuses on the quantum nature of a single 
electron, which is best described, not by a point particle, 
but by a wave packet. Owing to free space dispersion, one 
can define the smallest-sized wave packet at an FEL 
entrance that remains as such throughout an FEL. By 
utilizing this packet size, we have developed a 1D FEL 
theory that includes how quantum effects affect bunching. 

The smallest-sized wave packet is related to the 
quantum FEL parameter and offers new insights into the 
classical-to-quantum transition. It can be generalized to 
include 3D effects and offers a convenient way to classify 
FELs. Our theory indicates that gain reduction due to 
quantum averaging is much stronger than previously 
believed and will significantly affect harmonic lasing in 
x-ray FELs (XFELs). 

INTRODUCTION 
Interest in XFELs has grown in response to the 

expanding scientific demand in coherent x-ray light 
sources. XFELs, such as the LCLS at SLAC (USA) [1] 
and SACLA at Spring-8 (Japan) [2], deliver ultra-bright 
X-ray pulses having femtosecond duration. Their peak 
brilliance is about eight orders of magnitude higher than 
that from most other X-ray sources. The combination of 
high pulse energy and femtosecond pulse duration of 
coherent XFEL pulses has created new fields of research 
in ultrafast chemistry, structural biology and coherent 
diffractive imaging [3]. 

 The FEL was invented by John Madey [4] who used a 
quantum mechanical description to arrive at a classical 
result for the low-gain lasing regime. Thus, the FEL is 
considered by many to be a completely classical device 
[5-7]. However, there has been a significant effort to 
formulate a quantum mechanical description for FELs [8-
12] even though XFELs built to date are well described 
by the classical theory (as their bandwidth is much larger 
than the recoil frequency) [13]. 

The quantum regime for FEL operation discussed in 
Ref. [13] was further investigated in Refs. [14-19]. It was 
shown that the classical-to-quantum transition is 
controlled by a “quantum FEL parameter”, defined as the 

ratio between the FEL bandwidth and the photon recoil 
energy [20]. The quantum regime of operation requires 
the quantum FEL parameter to be small, a regime that 
cannot be reached by existing XFELs [1, 2]. 

Future XFELs are now being designed in response to 
demand for ever shorter radiation wavelengths and 
narrower bandwidths. However, cost limitations for future 
facilities drives their design to utilize accelerators with as 
low a beam energy as possible. These opposing design 
criteria exacerbate quantum mechanical effects requiring 
careful consideration of their impact on lasing 
performance.  

Here we focus on the quantum nature of a single 
electron and determine how it affects classical XFEL 
performance. Starting with the classical 1D theory and an 
analysis of the free space dispersion of an electron wave 
packet, we construct a hybrid 1D FEL theory that 
accounts for quantum uncertainty of the electron position 
inside an XFEL. This theory facilitates a unified 
description of XFELs and indicates that the planned 
MaRIE XFEL at Los Alamos National Lab [21] will be 
affected. 

CLASSICAL 1D THEORY 
XFELs are lasers that use relativistic electrons moving 

freely through a periodic magnetic structure in order to 
generate radiation. The magnetic structure, an undulator, 
is characterized by wiggle period u and strength 
parameter mckeBK u0 , where B0 is a peak magnetic 

field and 
uuk 2 . In a planar undulator, electrons 

with energy 0 in mc2 units generate x-ray radiation at a 
wavelength  2

0

2

2
1 / 2u K


   .  

The fundamentals of FEL instability are captured by 
the 1D theory with universal scaling in terms of the FEL 

parameter 3
82

1 1
22

0 A
JJK
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I u
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   for an electron beam with 

the peak current I and the transverse area A. Here 
IA =17 kA is the Alfven current and 

       nYJnYJJJ nnn 122   with  22 24 KKY   is the 

energy exchange parameter. The independent variable is 
the distance along the undulator, 

0/ gz Ltvz  , measured 

in the units of the 1D gain length  4/0 ugL  ; and the 

αth electron is described by its ponderomotive phase with 
respect to the radiation,   kcttvkk zu  , and the 

relative energy detuning,   00   . The complete 

set of coupled first-order differential equations has the 
following form: 
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FEL Theory
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where the radiation field, E, is normalized to the field at 
saturation 

02 0

10

gA
IcKJJ

sat LE 
 . 

Equations (1) and (2) are the pendulum equations and 
describe the motion of an electron in the ponderomotive 
potential created by the x-ray radiation. There are two 
classes of electrons – trapped (in the well) and untrapped. 
Trapped electrons bunch together and emit coherent 
radiation according to Eq. (3), which in turn deepens the 
ponderomotive well. This captures a fraction of the 
untrapped electrons and provides additional energy for 
further increasing x-ray radiation and trapping efficiency. 
Once all electrons are trapped at about 10sat z , the 

saturation is reached. 
We analyse the growth of FEL instability using the 

Vlasov equation for an ensemble of electrons with the 
distribution,     210 F  for    [5] and show 

that the x-ray radiation field obeys the equation: 
 

  02 22
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3
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dz

dE

dz

dE
i

dz
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Looking for a solution of the form zizieEE   0 , one 

obtains the cubic characteristic equation: 
    0122    (4) 

where the growth rate for the FEL instability is given by 
the negative imaginary part of a complex root (see 
Figure 1). 

QUANTUM ELECTRON 
Classical FEL theory depends on the localization of an 

electron in its ponderomotive well. According to quantum 
mechanics, an electron is not a point particle and 
therefore must be treated as a wave packet: 
 

   
   

 zs

e
ezs

zszs
zsik










2
,

22

0

4

 

 

having energy 22
0

2
0

2
0 1 cmk  in mc2 units. 

Consequently, electrons can only be localized in the 
ponderomotive well to no better than /2 s  and the 
ponderomotive phase of the αth electron is distributed as: 
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with      /2 zsz  . 

Owing to free space dispersion, the size of the wave 
packet cannot be infinitely small. Starting with a width

0s , it grows according to 
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where  2
0

2 41  Kcvz   is the average electron 

longitudinal velocity in an undulator and  24

2

3
0

1 Kc
z

cd 

  

is the free space dispersion modified by the presence of 
the undulator field. Thus, the initial size of the wave 
packet, 

0s , that minimizes the spreading of the wave 

packet inside an undulator of the dimensionless length, L, 
is 

zgz vLLds 0
2
0  . 

The quantum mechanical nature of electron limits the 
smallest-sized wave packet at the end of an undulator to 

 22

2 2

3
0

0 1 KLL

f
gcs 



, which is 7% of the radiation 

wavelength for MaRIE parameters [21]! Therefore, 
modification of the 1D theory is needed to include wave 
packet spreading in order to properly describe MaRIE 
XFEL performance. 

HYBRID 1D THEORY 
The 1D FEL theory can be amended by including wave 

packet spreading and quantum averaging. The modified 
set of coupled first-order differential equations takes the 
following form: 
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Figure 1: Growth rate for different energy spreads: 

0  (blue), 21  (red), 8.01  (yellow). 
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where the quantum averaging is 



 innin eee 222 , 

the quantum FEL parameter is  kmc   , and n is 

the harmonic lasing number [22-25]. 
The solution of the last equation is   2

0
222

0
2 4  zz   

and for 
satf zz   the minimal final uncertainty for the 

ponderomotive phase is  satzf  . This smallest-sized 

electron wave packet depends on the quantum FEL 
parameter and provides new insights into the classical-to-
quantum transition. 

In the classical regime, 1  (i.e.  f ) an 

electron can be treated as a point particle since this 
smallest-sized wave packet fits easily inside a 
ponderomotive well. In the intermediate regime, where 

1  (i.e.  f
), an electron extends slightly into 

neighbouring wells (see Figure 2). Lastly, in the quantum 
regime where 1  (i.e.  f

), an electron occupies 

more than a single ponderomotive well. In the particular 
case where 4.0 (see Ref. [16]), the FEL spectrum 

makes a transition from continuous to discreet, as an 
electron has a significant probability of being located in 
multiple nearest-neighbour wells (see Figure 2). 

DISCUSSION 
Previous theoretical works focused on collective 

bunching behaviour and used a symmetrized momentum 
bunching operator for quantization [19]. It has been found 
that the growth rate equation is similar to that from the 
dispersion relation for the classical FEL with initial 
energy spread 21  (see Eq. 4). This extra term 

represents the intrinsic quantum momentum spread due to 
recoil that, in dimensional units, is given by 2k . 

Hybrid 1D FEL theory provides new insight into FEL 
operation in the quantum regime by relating the smallest-
sized wave packet to the size of the ponderomotive well. 
The wave packet description of an electron also carries an 
intrinsic quantum momentum spread that, in 
dimensionless units, has an initial energy spread 

sat0 21 z . Here, contrary to expectations, the 

energy spread tends to zero for a point particle, 1 . 

One can perform a growth rate analysis for 1D hybrid 
theory by assuming a constant-sized wave packet since 
the minimum uncertainty wave packet spreads little inside 
an undulator:  
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where 222

1

n
JJ
JJ

n eq n  . Here, we assume single harmonic 

lasing, where only the nth harmonic is generated and all 
other harmonics are suppressed [22-25].  

The quantum nature of an electron, captured by the 1D 
hybrid theory, does not introduce energy spread. 
However, the FEL growth rate is still reduced due to 
quantum averaging. Figure 3 shows the FEL growth 
parameter as a function of detuning including reductions 
of the growth parameter based on quantum averaging and 
on the theory from Ref. [16]. For example, the on-
resonance growth rate for a mono-energetic electron 

beam is reduced due to quantum averaging by 322ne , 
which is much stronger than one would expect based on 
the previous analysis. 

1D theory does not take into account 3D effects that 
increase the gain length over 

0gL  and require a longer 

undulator in order to reach saturation. The quantum FEL 
parameter does not take into account such effects. The 
smallest-sized wave packet, on the other hand, becomes 
larger in size in order to accommodate the longer 
undulator length and thus behaves more quantum than 
would be otherwise expected. For a given smallest-sized 
wave packet with an FEL parameter  , there is a family 

of XFELs which generate x-ray radiation at a given 
energy that are equally affected by the quantum nature of 
electrons. Therefore, one can classify the quantum nature 
of XFELs based on the smallest-sized wave packet. 

Figure 2: Electron probability distribution at the end of an 
undulator,  , fW   , in the ponderomotive potential 

(green) for different values of the quantum FEL 
parameter: 100  (blue), 1  (red), and 4.0  

(yellow). 

Figure 3: Growth parameter for a mono-energetic beam 
without quantum averaging (blue) and with quantum 
averaging for 50  (red). The yellow line is for the 

growth parameter based on Ref. [16] for 1 .  
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Figure 4 shows the x-ray FEL families for different wave 
packet sizes. 

The final point of our discussion concerns harmonic 
lasing [22-25]. The reduction in performance caused by 
quantum averaging is stronger here due to the quadratic 
dependence on the harmonic number. Table 1 shows the 
expected gain reduction for the 3rd harmonic lasing with 
suppressed fundamental for current/planned facilities. 
While the growth rate for the fundamental is reduced by a 
few percent in a case of MaRIE facility, quantum 
averaging will reduce the on-resonance growth rate by 
60%. 

CONCLUSIONS 
The quantum nature of an electron expresses itself 

through its wave nature. The wave packet description of 
an electron is closer to a classical point particle 
description than it is to a plane wave description but free 
space dispersion effects remain. We have amended 1D 
FEL theory in order to include quantum averaging over 
the nonlocal electron wave packet. A long wave packet 
does not spread as much as a short wave packet, but it 
might still be longer at the end of the undulator. Thus, we 
have focused on the smallest wave packet that minimizes 
wave packet spreading at the end of an undulator. 

We have showed that classification of quantum FELs 
can be done based on either the quantum FEL parameter 
or the minimum uncertainty of wave packet spreading. 
However, when 3D effects are included, the later 
approach seems to be preferred over former. Furthermore, 
our approach provides new insights into the classical to 
the quantum regime transition. 

Based on the information in Table 1, one can estimate 

f  including 3D effects for different FEL facilities. 

Using the 1D expression for the minimal final uncertainty  

 
of the ponderomotive phase, one can define an effective 
quantum FEL parameter. In the case of the MaRIE 
facility, 50ff e , putting it in the classical domain based 

on the previous classification. However, its on-resonance 
growth parameter is reduced by as much as one would 
expect from the previous treatment with 1 . 
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Figure 4: X-ray FEL families for 45.0f  (blue), 

30.0f  (red), and 15.0f  (yellow) for 4105  . 

The vertical axis is in Angstrom and the horizontal axis is 
the energy of electrons in 2mc  units. 

Table 1: Gain Reduction Comparison for Various 
Facilities 

XFEL Energy r  rfs 2  rdqu 3

LCLS 14 GeV 1.5A   5% 0.93 

European 17.5 GeV 0.5A   8% 0.82 

PAL 10 GeV 0.6A 10% 0.75 

SACLA 8.5 GeV 0.6A 12% 0.64 

MaRIE 12 GeV 0.3A 14% 0.58 
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