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Abstract
Three-dimensional simulation of harmonic lasing Free-

electron laser is represented in the steady-state regime. Here,
the third harmonic of the first wiggler is adjusted at the
fundamental resonance of the second wiggler by reducing
the magnetic field strength of the second wiggler. The hy-
perbolic wave equations can be transformed into parabolic
diffusion equations by using the slowly varying envelope
approximation. A set of coupled nonlinear first-order dif-
ferential equations describing the nonlinear evolution of
the system is solved numerically by CYRUS3D code. This
set of equations describes self-consistently the longitudinal
spatial dependence of the radiation waists, curvatures, and
amplitudes together with the evaluation of the electron beam.
Thermal effects in the form of longitudinal velocity spread
are also investigated.

INTRODUCTION
High-gain free electron laser (FEL) amplifiers hold great

prospects of reaching coherent high power radiation in the x-
ray region of the electromagnetic spectrum. In recent years,
a great effort of researchers has been devoted to studying the
process of higher harmonic generation in achieving lasing
at shorter wavelengths [1–5].

Radiation of the electron beam in the planar wiggler con-
tains odd harmonics but the output power at the hth harmon-
ics is rather small and is of the order of 10−h times the power
of the fundamental [1, 3–5]. Recently, McNeil et al. [6] pro-
posed a harmonic lasing method for FEL amplifiers that can
amplify the higher harmonics by suppressing the interaction
at the fundamental resonance. They showed that this config-
uration can significantly extend the operation band of user
facilities.
Reference [6] has outlined two methods for suppressing

the interaction at the fundamental resonance while allowing
the third harmonic to evolve to saturation. The first method
is based upon shifting the phase of the fundamental between
the wiggler segments, which can be controlled by various
techniques [7]. For the hth harmonic, this phase shift should
be 2πn/h, where n = 1, 2, 3, . . . is an integer number and
h = 3, 5, 7, . . . is the harmonic number. The second method
is detuning of the fundamental by considering two different
segments for the wiggler. Two segments of the wiggler have
different magnetic field intensity while the wiggler period,
∗ nsmirian@ims.ac.jp

λw , and the initial average electron beam energy, γ, are kept
constant.
The thermal effect of the electron beam is particularly

important for higher harmonics, because they are more sen-
sitive to the energy spread than the fundamental one [8,9].
The energy spread is considered as a Gaussian energy dis-
tribution in MEDUSA code for nonlinear harmonic genera-
tion [10]. Also, in reference [7], the energy spread effects are
included that the gain length for the detuning of the funda-
mental is compared with the third harmonic in conventional
FEL.
The aim of this paper is to present a three-dimensional

simulation of the emission at the fundamental and third
harmonic in the non-wiggler-averaged-orbit approximation
of the harmonic lasing FEL with source-dependent expan-
sion [11–14]. Therefore, the source function is incorporated
self-consistently into the functional dependence of the ra-
diation waist, the radiation wavefront curvature, and the
radiation amplitude instead of using the usual modal expan-
sion consisting of vacuum Laguerre-Gaussian or Hermite-
Gaussian functions. It is important to emphasize that no
wiggler average is imposed on the orbit equations. There-
fore, It is possible to treat the injection of the beam into the
wiggler, with the ease of inclusion of external focusing or
dispersive magnetic components in the beam line and the
facility for using an actual magnetic field in the numerical
solution. The third harmonic lasing is considered so that the
operating wavelength is in the EUV domain. The slippage
of the radiation with respect to the long electron bunch is
ignored.
The code which is written for this purpose is named

CYRUS 3D, which was developed by PhD students in Amirk-
abir University and Institute for Research in Fundamental
Sciences (IPM). This code follows MEDUSA 3D [10] for-
mulation.

DESCRIPTION OF THE SIMULATION
CODE

The simulation code for three-dimensional non-wiggler
averaged-orbit formulation is CYRUS 3D code, that was
written in standard Fortran 95. This code is time indepen-
dent with harmonics and thermal effects taken into account.
It models planar wiggler and the electromagnetic field is rep-
resented as a superposition of Gauss-Hermit modes in the
slowly varying amplitude approximation. Electron trajecto-
ries are integrated using the three-dimensional(3D) Lorentz
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force equations in the magnetostatic and electromagnetic
fields.
This code like MEDUSA 3D employs nonaverage equa-

tions. The details of the formulation is explained in Ref. [10].
We simulate harmonic lasing FEL in which the wiggler con-
sists of two segments. In the harmonic lasing FEL the wig-
gler segments have two different magnetic field strengths
but the same wavelength λw .

The thermal effect of the electron beam on the harmonic
gain is particularly important. Higher harmonics are more
sensitive to the energy spread than the fundamental one [4,
6, 8]. It was concluded in Ref. [6] that harmonic lasing
with phase shifting is more sensitive to the emittance and
the energy spread than the harmonic lasing with detuning
of the fundamental. In Refs. [15], a spread in the traverse
momentum with constant total energy is considered. They
showed that a longitudinal spread is more effective than a
transverse spread in reducing the growth rate.

To consider effects of the energy spread, we assume longi-
tudinal spread without any spread in the transverse momen-
tum. So, the initial conditions is chosen to model the axial
injection of the electron beam with the energy in the form of
a Gaussian distribution function that is peaked around the ini-
tial energy of the beam. We choose the thermal distribution
function as

G0(pz ) =

√
2
π

1
∆pz

exp
(
−

2
(
pz − pz0

)
∆pz2

)
, (1)

where p0 and ∆pz0 are the initial bulk momentum and mo-
mentum spread, respectively.

〈(· · · )〉=
∫

dψ0
2π

σ‖ (ψ0)
"

dx0dy0σ⊥(x0, y0)
∫

dpG0(pz )(· · · )

(2)
To consider harmonic lasing FEL using the retuned fun-

damental resonant wavelength, the wiggler is composed of
two segments and the wavelength of the fundamental reso-
nance of the second segment is decreased by reducing the
magnetic field strength of the second segment of the wiggler.
In this case, for the first segment, the rms wiggler param-
eter is a1 and the fundamental resonant wavelength is λ1
giving the harmonic resonant wavelengths as λh = λ1/h,
h = 3, 5, 7, . . .. In the second segment, the rms wiggler pa-
rameter is reset to an so that the new resonant fundamental
wavelength is the nth harmonic of the first segment, λ ′1 = λn .
For the assumed fixed beam energy and wiggler period, the
retuned wiggler parameter an is obtain from the FEL reso-
nance relation

1 + a2
1

1 + a2
n

= n. (3)

Obviously, a1 must be larger than ac =
√

n − 1. Because
there are no real solutions for an for a1 < ac . So, the wiggler
can not be reduced to a fundamental wavelength λ ′1 = λn
for a1 < ac . We consider tuning the harmonic interaction
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Figure 1: Evolution for the power for the fudamental reso-
nance (solid line) and the third harmonic (dashed line).

by decreasing the wiggler magnetic field; it is clear this is
impractical for an operating X-ray FEL.

NUMERICAL ANALYSIS
Self-consistent first-order nonlinear differential equations

are solved numerically using the forth-order Runge-Kutta
algorithm subject to the appropriate initial conditions and in
the time independent approximation where the pulse length
is much longer than the slippage length over the course of
the wiggler. The particle averages are carried out using a
Gaussian quadrature technique in each of the degrees of free-
dom (x0, y0, ψ0, ϕ0, pz0, γ0). The number of Gauss-Hermite
modes that are needed in the code depends on each particular
example. The self-guiding effects of the electron beam in
an FEL during exponential gain become dominant over the
diffraction, and the balance depends on the Rayleigh length,
the growth rate, and the evolution of the beam envelope.
Therefore, it is necessary to choose a suitable basis set in
order to determine the optical mode content. The number
of modes that are determined by an empirical procedure in
which successive simulation runs are made with an increas-
ing number of modes until convergence of the saturation
power and saturation length are achieved.
The parameters for the electron beam, the wiggler, and

the radiation in the simulation are as follows. The elec-
tron beam has the relativistic factor of 964, a peak current
of 300A, an initial radius of 0.01495 cm, and an energy
spread of 0.01%. The wiggler period is 3.3 cm and exhibits
a peak of on-axis amplitude equal to 10.06 kG. An entry
taper region is Nw = 10 wiggler period in length which is
necessary in order to inject the electrons into the steady-state
trajectories. Using these beams and wiggler parameters, the
fundamental resonance is at a wavelength of 102.9 nm in the
1D resonance formula. Because of betatron motion in three
dimensions, fundamental resonance is found at the wave-
length of 103.6 nm, which is seeded with a 10W of optical
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Figure 2: Transverse intensity profile of the fundamental
resonance wavelength (a) and the third harmonic wavelength
(b) in the x direction for y = 0
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Figure 3: Evolution of the radiation spot size for the funda-
mental resonance (solid line) and third harmonic (dashed
line).

power. The third harmonic wavelength is at 34.5 nm and
starts from zero initial power. The initial radiation waists are
0.037 cm and the initial alpha parameters are chosen to be
zero. The initial state of electron beams is chosen to model
the injection of an axisymmetric electron beams with the
flattop density profiles, i.e., σ⊥ = 1. For unbunched electron
beam, the particles are uniformly distributed in phase.

The fundamental resonance is suppressed by reducing the
wiggler magnetic field strength at L1 = 10m with a3 = 0.97
while the third harmonic grows to saturation. In Fig. 1, the
power of the fundamental resonance (solid line) and the
third harmonic (dashed line) are plotted as a function of the
distance through the wiggler. The intensity of the shorter
wavelength is larger than the intensity of the fundamental
wavelength. Therefore, reducing the wiggler magnetic field,
the fundamental resonance will be suppressed and the third
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Figure 4: Evolution of α1and α3with longitudinal coordi-
nate.

harmonic of the first segment of the wiggler is a seed for the
fundamental harmonic of the second segment of the wiggler
leading to higher power. The fundamental resonance in Fig. 1
is suppressed at z = 10mwith the power of 2.7×107 W. The
third harmonic approaches to saturation point at z = 19.5m
with the power of 4.8 × 107 W.

Evolution of the radiation amplitude in the transverse
plane is shown in Figs. 2(a) and 2(b) as a function of z for
the fundamental mode and the third harmonic, respectively.
Although, these figures do not show the amplification of the
radiation because of normalization of transverse profile to
peak intensity of 1, they show that the amplitude profile of
the radiation in the transverse plane becomes narrower as the
radiation propagates toward the point of saturation and this
mode narrowing is greater for the third harmonic. As it is
seen in Fig. 2(b), the transverse intensity profile for the third
harmonic initially widens until z=6.6m, the point where the
small gain ends. Because the radiation undergoes diffraction
in the small gain region and experiences rapid focusing so-
called gain guiding, at the onset of exponential growth it
leads to narrowing transverse intensity profile. Thus, the
transverse profile of the radiation appears to be guided with
an exponentially growing amplitude. The position of the
saturation point can be inferred from the point where mode
narrowing stops and the intensity profile widens. Because
the gain guiding is no longer effective after the saturation
point the radiation waist begins to grow.

In Fig. 3, the radiation waist of the fundamental resonance
and third harmonic are plotted. The radiation waist for the
third harmonic is observed to expand, from its initial size,
during the small signal region because of vacuum diffraction.
This can also be seen in Fig. 2(b). At the exponential growth
region, optical guiding becomes strong and focusing is rapid.
Finally, the radiation waist expends rapidly as the saturation
point is reached. The radiation waist for the fundamental
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Figure 5: Composition histogram of modes at the beginning wiggler (a), the suppresion point (b), and the saturation
point (c).

resonance behaves similar to the third harmonic, and grows
faster at the suppressing point.
The curvature of the phase front, α, is shown in Fig. 4.

Both fundamental and the third harmonic, which are plane
waves at the entrance to the wiggler at z = 0, deviate from
plane waves as radiation travels along the wiggler. The cur-
vature of the phase front of the third harmonic increases
abruptly as saturation occurs but for the fundamental reso-
nance, it increases rapidly at the suppression point.
The composition process will introduce higher-order

modes in an attempt to account. Figure 5 shows the mode
content histogram at the beginning, suppression and satura-
tion point of the third harmonic. Figure 5 represents that a
purely (0,0) mode at the beginning of the wiggler. It can be
seen that the lowest order mode TEM0,0 is dominant at the
saturation point.

CONCLUSION
In this paper, we analyzed harmonic lasing to enhance

harmonic generation in the frame work of the realistic 3D
model of the FEL process by using a nonaveraged simula-
tions, which is namedCYRUS 3D. In the absence of slippage,
the variation of radiation waists, curvatures, and amplitudes
for fundamental resonance and the third harmonic are stud-
ied. The radiation power of the third harmonic is larger than
that of the fundamental resonance in contrast to the nonlinear
harmonic generation. Also, the composition of significant
modes of the third harmonic is presented which shows that
the lowest order mode is dominant.
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