
HARMONIC GENERATION IN TWO ORTHOGONAL UNDULATORS∗

Najmeh Sadat Mirian†
UVSOR Facility, Institute for Molecular Science (IMS), Okazaki, Japan and

School of Particle and Accelerator Physics, IPM, Tehran, Iran

Abstract
In this report, the harmonic generation in two orthogonal

undulators is under discussion. There is a possibility of gen-

eration of the even and odd harmonics as well as no-integer

harmonics in two orthogonal undulators. By considering

the first order of electron velocity, the total energy radiated

per unit solid angle per unit frequency interval for a sin-

gle electron traveling along the undulators is derived. Also

a numerical simulation of one-dimensional non-averaged

equations is conducted to present the self amplified sponta-

neous emission of harmonic generation in two orthogonal

undulators.

INTRODUCTION
Modern high intensity sources are based on the electron

radiation through undulator in synchrotrons and free electron

lasers (FEL). Free electron lasers that are mostly based on

self amplified spontaneous emission, hold great prospects

as high power, coherent, and tunable radiation in the high

frequency region of the electromagnetic spectrum [1,2]. The

angular distribution of the radiation in undulators is obtained

by computing the amount of energy lost by the particle in a

retarded time during the emission of the signal. In practice,

the spectrum of the radiation depends on the detailed motion

of the electron and on the direction from which the electron

is observed.

In a planar undulator with an ideal sinusoidal periodic

magnetic field, the electrons radiate at odd harmonics due to

their non-uniform axial motion. In ideal helical undulator,

because of the constant longitudinal velocity, the spectrum

is centered about the resonance frequency and there is no

significant harmonic growth.

The two orthogonal undulators in FEL has been proposed

as away toward the product of two tunable color radiation

pulses with different polarizations, while the total length of

device dose not change with the respect to the usual single-

color FEL [3, 4]. The form of this undulator is composed of

two linear undulators orthogonally polarized with different

periods. The possibility of generation of two radiation waves

with different frequencies and different polarizations was

investigated. We showed that by changing dependently the

strength of the two magnetic fields, we can control the final

power and the saturation length.

This report focuses on studying the harmonic generation

in the two-orthogonal undulators in two different methods.
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FIELD EQUATIONS
The undulator magnetic field, in the paraxial approxima-

tion, is described by the following expression

Bw = Bw2 cos(k02z)êx + Bw1 cos(k01z)êy, (1)

where Bwi is the untapered undulator field amplitude,

k01,02 = 2π/λ01,02 are undulator wave numbers and K1,2 =���eBw1,2λ01,2/mc2��� are the deflecting parameters. We assume
nλ01 = mλ02, which permits us to treat the cases of a har-
monic relation between λ01 and λ02 and of rational m/n.
The proper resonance relation in this magnetic file has been

obtained as [3, 4]

λ1,2 =
λ01,02

γ
(1 +

K2
1

2
+

K2
2

2
), (2)

where λ1 and λ2 are, respectively, fundamental resonance
wavelength in the x and y direction. The one-dimensional

vector potential can be assumed to be

A = i
∑
h

[
A1hei (k1z−ω1t ) êx + A2hei (k2z−ω2t ) êy

]
, (3)

where h is the harmonic number. The vector potential am-
plitudes A1,2h = A(1)

1,2h
+ i A(2)

1,2h
, are assumed to vary slowly

in z and t. By using Maxwell-Poisson equation in Gaus-
sian gauge, and the slowly varying envelope approximation

(SVEA), the two polarization amplitudes take the following

independent differential form:

∂

∂z
A1,2h +

1

c
∂

∂t
A1,2h = 2πen

k1,2

∑
h βx,y jδ(z − z j )e−iα1,2h j ,

α1,2h = h(k1,2z − ω1,2t) = hα1,2, (4)

where ω1,2 = k1,2c is radiation frequency for fundamental
resonance. Similar to the way used in Ref [4] after averaging

ofMaxwell’s equation over time scale 
/c ( where 
 = nλ1 =
mλ2), we have

(
∂

∂z
− ∂
∂t

) (
a(1)
1h

a(2)
1h

)
=
ω2p

2hω1c
βz,0 ��

〈
ux

|uz | cos(α1h )
〉

−
〈

ux

|uz | sin(α1h )
〉 �
� ,
(5)(

∂

∂z
− ∂
∂t

) (
a(1)
2h

a(2)
2h

)
=
ω2p

2hω1c
βz,0 ��

〈
uy

|uz | cos(α2h )
〉

−
〈

uy

|uz | sin(α2h )
〉 �
� ,
(6)

a(1,2)
h

= e
A(1,2)
h

mc2
is the normalized amplitude, ω2p =

4πe2n/mc2 is the square of plasma frequency, and u =
P/mc = γ β is a dimensionless variable. The averaging
operator is defined as
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〈(· · · )〉 =
∫ 2π

0

σ(ψ0)
2π

dψ0(· · · ), (7)

where σ(ψ0) is the phase distribution at the entry time t0 ,
and ψ0 is the initial phase ψ0 = ωt0.

MOMENTUM EQUATION
By using Lorentz force equation, the momentum equa-

tions for the ith electron of the beam can be derived as

dpi x,y
dt

= eβizBw1,2 cos(k01,2z)

−
∑
h

ehk1,2(1 − βiz )[A1,2heihαi1,2 + cc],

dpiz
dt
= eβiy Bw2 cos(k02z) −

∑
h

ehk2 βiy [A2heihαi2 + cc]

− ehβi xBw1 cos(k01z) −
∑
h

ek1 βi x [A1heihαi1 + cc],

(8)

where βx,y,z j = vx,y,z j/c are the normalized velocity com-
ponents. In first order longitudinal velocity takes following

form [4]

βz =
1

4

⎡⎢⎢⎢⎢⎣
(

K1

γ

)2
cos(2k01z) +

(
K2

γ

)2
cos(2k02z)

⎤⎥⎥⎥⎥⎦ + β0,
(9)

where β2
0
= 1 − 1/γ2. The trajectories of the electrons in

first order takes form:

r j = β0ctêz − λ01
2π

K1

γ0
sin(ω01t)êx − λ02

2π

K2

γ0
sin(ω02t)êy

+
λ01
16π

(
K1

γ0

)2
sin(2ω01t)êz +

λ02
16π

(
K2

γ0

)2
sin(2ω02t)êz .

(10)

HARMONIC GENERATION
The total energy radiated per unit solid angle per unit

frequency interval for a single electron in an undulator with

length Lw = Nwiλ0i is obtained by

d2I
dωdΩ

=
e2

4π2c

�����
∫ Lw/2c

−Lw/2c
dt n × [n × β(t)]eiω[t−n.r(t )/c]

�����
2

,

(11)

here, n is a unit vector from the electron to the observer. Only

the emission in the forward direction (n = êz ) is considered,
then

êz .r≈ β0ct+
λ01
16π

(
K1

γ0

)2
sin(2ω01t)+

λ02
16π

(
K2

γ0

)2

× sin(2ω02t),

êz × [êz × β(t)] = − 1

γ
[K1 sin(ω01t) + K2 sin(ω02t)] ,

(12)

where ω01,2 = k01,2c. By using following expansion

e−iξ sin θ = 2π
l=∞∑
l=−∞

Jl (ξ)e−ilθ, (13)

where Jl (ς) is a Bessel function of the first kind, one can
write

êz×[êz×β(t)]eiω(t−êz .r/c)=
2π

2iγ2
∑
d

∑
d′
[Jd ( χ1)Jd′ ( χ2)

[K1[eit (ω(1−β0)−ω0 (2(d+dς)−1))−eit (ω (1−β0)−ω0 (2(d+d′ς)+1))]êx

+K2[eit (ω (1−β0)−ω0 (2(d+dς)−ς))−eit (ω (1−β0)−ω0 (2(d+d′ς)+ς))]êy ],

(14)

here, χ1,2 = K1,2ω/8πcγ2kw1,2, and ς = ω2/ω1 = m/n.
Therefore, by integration of Eq. (14) in Eq.(11), we have

d2I
dωdΩ

= e2

γ2ω2
01
c

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎣K1
∑

d

∑
d′ Jd ( χ1)Jd′ ( χ2) ��

sin
(

(ω−ωr (1−2(d−d′ς)))Nπ
ωr

)
(

(ω−ωr (1−2d−d′ς))Nπ
ωr

) − sin
(

(ω−ωr (1+2(d+d′ς))Nπ
ωr

)
(

(ω−ωr (1+2(d+d′ς))Nπ
ωr

) �
�
⎤⎥⎥⎥⎥⎦
2

+

⎡⎢⎢⎢⎢⎣K2
∑

d

∑
d′ Jd ( χ1)Jd′ ( χ2) ��

sin
(

(ω−ωr (ς−2(d+d′ς))Nπ
ωr

)
(

(ω−ωr (ς−2(d−+dς))Nπ
ωr

) − sin
(

(ω−ωr (ς+2(d−+dς))Nπ
ωr

)
(

(ω−ωr (ς+2(d+d′ς))Nπ
ωr

) �
�
⎤⎥⎥⎥⎥⎦
2

, (15)

Equation (15) shows depending on value of ς, we can have
even and odd harmonics. If ς is the odd number, instead,
odd harmonics domain. As well, if ς is even, certainly we
have growth of even harmonics. Further, this equation shows

in some cases we can observe the no-integer harmonics.

Figure 1 displays this equation for different values of ς
at z=4 m. As can be seen in case (c) where the ς is non-
integer number, we can observe the integer and non-integer

harmonics.

Polarization angle of radiation is another important is-

sue in two orthogonal undulators. However, we know it

depends on the magnetic field intensity of each undulator.

Figure 2 presents the radiation polarization angle in various

frequencies.
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ω ω ω ω ω ω

Figure 1: Spectrum of the radiation of one electron at z=4 m (a) m/n=2, (b)m/n=3 and (c) m/n=3/2, K1 = K2 = 2.1, λ01 =
2.8 cm.

ω ω

θ

ω ω ω ω

Figure 2: Radiation polarization angle of one electron radiation, while (a) m/n=2, (b)m/n=3 and (c) m/n=3/2, K1 = K2 =

2.1, λ01 = 2.8 cm.

TIME DEPENDENT SIMULATION AND
SHOT NOISE ALGORITHM

The set of the vector potential fields, phases and the non av-

eraged dynamic equations includes 4Ne + 2Nh self-constant

first order differential equations, where Ne indicates the

macroparticle numbers in one beamlet, and Nh is the num-

ber of harmonics. In this case the length of the beamlet is


 = nλ1 = mλ2. For simulation, we extended the Cyrus
1D code [6]. Cyrus 1D follows the approach of MEDUSA

1D [5]. This code shows very significant agreement with T1

code [7] corresponding to averaged FEL code and logistic

map formula proposed with G. Dattoli [8].

To include shot noise in the simulation, the macroparticles

are assumed to load over [0, 2π] and perturbation due to shot
noise is imposed to the phases, such that

α′j = α j + δα sin(α j − φ)

where φ is chosen randomly over the interval [0, 2π] and
δα � 1 describe the Poisson statistics. The phase of

macroparticle, in x-polarization and y-polarization of elec-

tromagnetic radiation, are defined as

α1 j = nα′, α2 j = mα′j . (16)

For time dependent (i.e slippage) simulationwe use approach

explained in Ref [9], however in this case the electron bunch

with Lb length is divided to Lb/
 slices and the time de-

pendent operation in Rung-Kutta loop is imposed on every

spatial interval 
w = nλ01 = mλ02.

In simulation the electron current is assumed to be 100 A

and γ = 300. Fig.3 presents the evolution of pulse energy
of (a) x-polarization (λ1) and (b) y-polarization (λ2) for dif-
ferent harmonics through undulator interaction, while the

m/n = 2/1. It shows the growth of the even harmonics as
well as the odd harmonics. For x-polarization, the intensity

of the fifth harmonic at saturation point is higher than inten-

sity of the third harmonic. For y-polarization, the intensity

of the second harmonic is higher than the odd harmonics.

Figure 4 shows, when m/n=3/1, both m and n are the

odd number, the odd harmonics of the x-polarization and

y-polarization have higher intensity respect to the even har-

monics. In fact, the growth of the odd harmonics are faster.

Further, this plot shows that the pulse energy at the saturation

point, z=4 m, for the third harmonic of the x-polarization,

which has the wavelength equal to the fundamental reso-

nance of the y-polarization, is higher than the fundamental

resonance of x-polarization.

Figure 5 demonstrates the evolution of harmonic pulse

energy, when m/n=3/2. Plat (a) indicates that the energy of

the second harmonic pulse is equal to the third harmonic

pulse energy at z=6 m.

Figures 6 and 7 show the pulse shape near saturation point

z = 4.5 m, for different harmonics of x-polarization and y-
polarization when, respectively, m/n = 2 and m/n = 3.
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Figure 3: Evolution of pulse energy through undulator interaction for different harmonics (a) x- polarization , (b) y-

polarization, m/n=2/1.
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Figure 4: Evolution of pulse energy through undulator interaction for different harmonics (a) x- polarization , (b) y-

polarization,m/n=3/1.
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Figure 5: Evolution of pulse energy through undulator interaction for different harmonics(a) x- polarization , (b) y-

polarization, m/n=3/2.
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Figure 6: Power pulse shape in z=4.5, up : x-polarization, down: y-polarization; m/n=2.
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Figure 7: Power pulse shape in z=4.5, up : x-polarization, down: y-polarization; m/n=3.
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CONCLUSION
This report focuses on studying the harmonic generation

in the two-orthogonal undulators in two different methods.

By considering the total energy radiated per unit solid angle

per unit frequency interval for a single electron traveling

the undulators and also by numerical simulation of one-

dimensional non-averaged equations, we have demonstrated

the possibility of generation of the even and odd harmonics

as well as no-integer harmonic in two orthogonal undulators.
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