Author: Rowen, M.
Paper Title Page
TUP026 Measurment Uncertainties in Gas-Based Monitors for High Repetition Rate X-Ray FEL Operations 417
 
  • Y. Feng, M.L. Campell, J. Krzywinski, E. Ortiz, T.O. Raubenheimer, M. Rowen, D.W. Schafer
    SLAC, Menlo Park, California, USA
 
  Funding: Portions of this research were carried out at the LCLS at the SLAC National Accelerator Laboratory. LCLS is an User Facility operated for the US DOE Office of Science by Stanford University.
Thermodynamic simulations using a finite difference method were carried out to investigate the measurement uncertainties in gas-based X-ray FEL diagnostic monitors under high repetition rate operations such as planned for the future LCLS-II soft and hard X-ray FEL's. For monitors using relatively high gas pressures for obtaining sufficient signals, the absorbed thermal power becomes non-negligible as repetition rate increases while keeping pulse energy constant. The fluctuations in the absorbed power were shown to induce significant measurements uncertainties, especially in the single-pulse mode. The magnitude of this thermal effect depends nonlinearly on the absorbed power and can be minimized by using a more efficient detection scheme in which the gas pressure can be set sufficiently low
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP056 Design Challenge and Strategy for the LCLS-II High Repetition Rate X-ray FEL Photon Stoppers 493
 
  • Y. Feng, J.T. Delor, J. Krzywinski, P.A. Montanez, E. Ortiz, T.O. Raubenheimer, M. Rowen
    SLAC, Menlo Park, California, USA
 
  Funding: Portions of this research were carried out at the LCLS at the SLAC National Accelerator Laboratory. LCLS is an User Facility operated for the US DOE Office of Science by Stanford University.
Future high repetition rate X-ray FELs such as the European XFEL and LCLS-II presents new challenges to photon diagnostics as well as essential beamline components. In addition to these devices having to sustain the high peak power of a single-pulse FEL radiation, they must also be capable of handling the enormous power density of tens to hundreds of watts over an area as small as 0.1 mm X mm. In this talk, I will discuss the potential impact of high power FEL operation on performance of a gas attenuator and the design challenges to beam intercepting components such as a collimator or stopper.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)