Author: Konstantin, T.
Paper Title Page
WEP010 Development of Phonon Dynamics Measurement System by MIR-FEL and Pico-second Laser 615
  • T. Murata, T. Katsurayama, T. Kii, T. Konstantin, K. Masuda, T. Nogi, H. Ohgaki, S. Suphakul, K. Torgasin, H. Zen
    Kyoto University, Kyoto, Japan
  • K. Hachiya
    Kyoto University Graduate School of Energy Science, Kyoto, Japan
  • K. Yoshida
    Kumamoto University, Department of Applied Chemistry and Biochemistry, Kumamoto, Japan
  Coherent control of a lattice vibration in bulk solid (mode-selective phonon excitation: MSPE) is one of the attractive methods in the solid state physics because it becomes a powerful tool for the study of ultrafast lattice dynamics (e.g. electron-phonon interaction and phonon-phonon interaction). Not only for that, MSPE can control electronic, magnetic, and structural phases of materials. In 2013, we have directly demonstrated MSPE of a bulk material with MIR-FEL (KU-FEL) by anti-Stokes Raman scattering spectroscopy. For the next step, we are starting a phonon dynamics measurement to investigate the difference of physical property between thermally excited phonon (phonon of equilibrium state) and optically excited phonon (phonon of non-equilibrium state) by time-resolved method in combination with a pico-second VIS laser. By using pico-second laser, we also expect to perform the anti-Stokes hyper-Raman scattering spectroscopy to extend MSPE method to the phonon mode which has Raman inactive . As the first step, we have commissioned the time-resolved phonon measurement system and started measurement on 6H-SiC. In this conference, we will present the outline of measurement system, and experimental results.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)