Author: Chaisueb, N.
Paper Title Page
WEP061 Numerical and Experimental Studies on Electron Beam Properties from Asymmetric RF-gun 698
 
  • S. Rimjaem, N. Chaisueb, J. Saisut, C. Thongbai, W. Thongpakdi
    Chiang Mai University, Chiang Mai, Thailand
  • N. Kangrang
    FNRF, Chiang Mai, Thailand
  • E. Kongmon, K. Kosaentor, P. Wichaisirimongkol
    IST, Chiang Mai, Thailand
 
  Funding: This work has been supported by the CMU Junior Research Fellowship Program, and the Department of Physics and Materials Science, Faculty of Science, Chiang Mai University.
The electron linear accelerator at the Plasma and Beam Physics Research Facility (PBP-CMU Linac), Chiang Mai University, Thailand, is used to produce femtosecond electron bunches for generation of THz radiation. The main components of the PBP-CMU Linac are a thermionic RF electron gun, an alpha magnet, a travelling wave linac structure, quadrupole lens, steering magnets, and various diagnostic components. The RF-gun consists of a 1.6 S-band standing wave structure and a side-coupling cavity. The 2856 MHz RF wave is transmitted from the klystron to the gun through a rectangular waveguide input-port. Both the RF input-port and the side-coupling cavity cause an asymmetric electromagnetic field distribution inside the gun. The electron beam from the RF-gun has asymmetric transverse shape with an emittance value, which is higher than the beam from the symmetric fields. The problems are increased when the beam is transported from the gun through the whole accelerator system. Beam dynamic simulations are performed to investigate the effect of the asymmetric fields on the electron properties by using the codes PARMELA and ELEGANT. An integrated electron beam diagnostic station to measure the beam properties will be installed in the system to investigate these effects. Results from numerical and experimental studies are reported in this contribution.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP062 Study on Undulator Radiation from Femtosecond Electron Bunches 702
 
  • N. Chaisueb, S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
 
  Funding: This work has been supported by the CMU Junior Research Fellowship Program, the Department of Physics and Material Science, Faculty of science, Chiang Mai University, and SAST Scholarship.
Linac based terahertz (THz) source at the Plasma and Beam Physics (PBP) Research Facility, Chiang Mai University, consists of a thermionic RF electron gun, an alpha magnet for magnetic bunch compressor, a travelling wave S-band accelerating structure for post acceleration, and various beam diagnostic instruments. The PBP-CMU linac can produce relativistic femtosecond electron bunches, which are used to generate coherent THz radiation via transition radiation technique. To increase the radiation intensity, an electromagnetic undulator will be added in the beam transport line. The designed electromagnetic undulator has 40.5 periods with a period length of 56 mm and a pole gap of 15 mm. Numerical calculation result shows that the brightness of the undulator radiation, which is produced from electron bunches with an energy of 10 MeV, a peak current of 300 A, and an effective bunch length of 120 fs, is about 10 thousand times higher than the brightness of the transition radiation. This study investigates the dependence of the electron beam energy, electron bunch charge, and electron bunch length on the coherent undulator radiation by using the PARMELA code. The numerical simulation and procedure to generate the undulator radiation in the terahertz regime by using femtosecond electron bunches produced at the PBP research facility is reported and discussed in this contribution.
The authors would like to acknowledge the financial support to participate this conference by the Department of Physics and Material Science and the Graduate School, Chiang Mai University.
 
poster icon Poster WEP062 [8.172 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)