The 2014 International Free Electron Laser Conference

Experimental demonstration of spectrum control in a seeded free-electron laser using corrugated device

Haixiao Deng (邓海啸) On behalf of FEL physics group

Shanghai Synchrotron Radiation Facility (SSRF) Shanghai Institute of Applied Physics, the Chinese Academy of Science

25-29 Aug. 2014, Basel, Switzerland

Outline

Backgrounds Proposal & experiment at SDUV-FEL Summary and outlook

Wakefield of corrugated de-chirper

Undesired time-energy correlation in the beam (e.g., linear energy chirp) may broaden FEL bandwidth and decrease FEL gain. After bunch compressor, the remain beam energy chirp is typically corrected by off-crest acceleration & wakefield in a following LINAC.

$$W_{\lambda}(s) = -\int_{0}^{\infty} W(s')\lambda(s-s')\,ds'$$
$$W(s) = 2\varkappa H(s)\cos ks$$
$$k = \sqrt{\frac{2p}{a\delta g}} \qquad \varkappa = \frac{Z_{0}c}{2\pi a^{2}}$$

has a near maximal possible amplitudehas a relatively large oscillation

$a[\mu { m m}]$	$\delta [\mu { m m}]$	$p\left[\mu\mathrm{m} ight]$	$g\left[\mu\mathrm{m} ight]$	$L [\mathrm{m}]$	$k [\mathrm{mm}^{-1}]$	$\varkappa[{\rm MV/nC{\cdot}m}]$	$(1-\eta)$
3000	450	1000	750	6.65	1.4	2.0	0.68

K. Bane and G. Stupakov, NIMA, 690, 106 (2012)

Development of corrugated structures

- Theoretical study for "corrugated structure" by K. Bane and G. Stupakov, which is initially motivated for NGLS case.
 - ✓ K. Bane and G. Stupakov, NIMA, 690, 106 (2012)
- Adjustable gap type of flat geometry **better controllability**
 - ✓ Longitudinal wake for flat geometry, PRST-AB, 6, 024401 (2003)
 - ✓ Transverse wake for flat geometry was derived in 2013, SLAC-PUB
- Corrugated structure serves as a beam linearizer, beam energy stabilizer, & high power Terahertz emitter.
- □ Passive de-chirper using beam self-induced wakefield to remove head-totail chirp are now seriously considered at LCLS, PAL-XFEL & SWISS-FEL.
- Proof-of-principle experiments have been proposed and demonstrated.

Corrugated de-chirper test at PAL-ITF

P. Emma, M. Venturini, K. L. F. Bane, et al., Phys. Rev. Lett. 112, 034801 (2014)

Corrugated de-chirper test at BNL-ATF

An 18cm long pair of aluminum plates with 1mm corrugations removed ~50% of 400keV/mm chirp from 58MeV beam with 3.4ps bunch length. The plot below shows the amount of chirp removed at various plate separations. [1]

Full-scale test at LCLS with 2 meter long sections planned for 2015. [2]

Spectrometer measurements with different gaps (a) 30 mm (b) 9 mm (c) 3.4 mm.

Side view of corrugated de-chirper plates

 M. Harrison, et al. "Further Analysis of Corrugated Plate Dechirper Experiment at BNL-ATF," FEL'14 THP034
 M. Harrison, et al. "Mechanical Design for a Corrugated Plate Dechirper System for LCLS," FEL'14 THP033

About SDUV-FEL

- Shanghai Deep Ultraviolet Free-Electron Laser (SDUV-FEL) started as a 262nm SASE / 88nm HGHG FEL test setup around 2000.
- Funding partially supported by
 - Chinese Academy of Sciences / CAS
 - Ministry of Science and Technology of China / MOST
 - ✓ National Natural Science Foundation of China / NSFC
- **Collaborating between USTC, IHEP, TUB and SINAP.**
- **2009.04**, LINAC commissioning started.
- Currently, it is a test bed for FEL novel principles & key technologies for future X-ray FELs.

2. Proposal & experiment at SDUV-FEL

Corrugated experiment proposal at SDUV-FEL

- To date, de-chirper experiments were carried out on LIANCs at PAL & BNL, However they are just beam experiments.
- □ In SDUV-FEL proposal, we fight for the first operation of corrugated device in a real FEL facility.

Work supported by NSFC (11175240, 11205234 and 11322550) and Major State Basic Research Development Program of China (2011CB808300).

Corrugated device design & manufacture

Material	Aluminum	
depth δ	2.0mm	
corrugated width g	0.3mm	
period p	0.6mm	
length	300mm	
width	30mm	

CST calculation of wakefield of the corrugated structures used at SDUV-FEL

Corrugated device assembly & alignment

2. Proposal & experiment at SDUV-FEL

Beam energy spread suppression measurement

FEL radiator undulator & spectrometer

TRIAX550 spectrometer 600 line grating 2.7nm resolution @ 1mm slit (calibrated)

40mm*80 periods, with variable gap

Main experiment parameters

Electron Beam					
Beam Energy [MeV]	~140	Slice Energy Spread [keV]	1		
Bunch length [ps]	8.8	Normalized Emittance	4~6 mm mrad		
Total Charge [pC]	100	Transverse Beam Size	~200 µm		
Modulator (EMU65)					
Period Length [m]	0.065	Period Number	10		
Radiator (ADC)					
Period Length [m]	0.04	Period Number	40*2		
Seed Laser System					
Wavelength [nm]	1047	Time Duration (FWHM) [ps]	~ 8.0		
Peak Power [MW]	~ 10	Rayleigh Length [m]	~ 3.0		
Corrugated structures					
Total Length [m]	0.3	Separation [mm]	0 ~ 30		

Start-to-end simulation results

FEL spectrum measurement

Blue: corrugated structure open, Red: corrugated structure closed (2mm separation)

FEL spectrum measurement

Blue: corrugated structure open, **Red**: corrugated structure closed (2mm separation)

FEL spectrum measurement

Blue: corrugated structure open, Red: corrugated structure closed (2mm separation)

2. Proposal & experiment at SDUV-FEL

FEL spectrum measurement

Blue: corrugated structure open, **Red**: corrugated structure closed (2mm separation)

Central wavelength: 8nm redshift FEL bandwidth: 8nm \rightarrow 4nm

Conclusions

- Corrugated device could be beam de-chirper, linearizer, stabilizer and THz emitter in FEL light sources. Several beam experiments of corrugated structure were carried out on LINACs at BNL & PAL.
- SDUV-FEL is one of the most competitive test FEL facilities, on which the first FEL spectrum control experiment by corrugated device was accomplished more recently.
 - ✓ FEL central wavelength is shifted from 550nm to 558nm.
 - ✓ Seeded FEL bandwidth is reduced from 8nm to 4nm, 50% order.
- □ When electron beam is accelerated on-crest, beam energy spread suppression from 1.1×10⁻³ to 7.5×10⁻⁴ was observed.
- The experiment results agree well with simulations, which confirms the theory of corrugated structures for FEL improvement.

Corrugated device beam manipulation for SXFEL

Energy spread control in MeV UEM

	RF photogun	ps $MeV TEM$
Number of electrons	10^{7}	$> 10^{6}$
rms normalized emittance	40 nm	< 10 nm
rms energy spread	10^{-3}	$< 10^{-4}$
FWHM bunch length	$< 200 { m ~fs}$	10 ps

TABLE I. Requirements on electron source parameters.

R. Li, P. Musumeci, Phys. Rev. Appl. 2, 024003 (2014). D. Xiang et al., NIMA 759, 74-83 (2014).

Gun type	2.4-cell	
Laser pulse (ps)	10	0.5
Laser diameter (µm)	100	
Therm. emitt. (0.8µmrad/mm)	0.02	
Charge (pC)	1	Red: with 20cm corrugated linearizer
E _{peak} (MV/m)	100	-2 -1.5 -1 -0.5 0 0.5 1
		x 10

0.006%

Energy spread: 0.07%

Acknowledgment

- **Dong Wang, Zhimin Dai and Zhentang Zhao for continuous support.**
- Collaboration with Meng Zhang from LINAC group, who took care all related beam dynamics.
- Many thanks to colleagues in the Shanghai Institute of Applied Physics for excellent support during the experiments.
- Special thank to Dan Wang from TUB, Dao Xiang from SJTU, Gennady Stupakov from SLAC and Marie-emmanuelle Couprie from SOLEIL for helpful discussions.

