P. Emma, N. Holtkamp, H.-D. Nuhn, SLAC

C. Doose, J. Fuerst, Q. Hasse, Y. Ivanyushenkov, M. Kasa, G. Pile, E. Trakhtenberg, E. Gluskin, *ANL* D. Arbelaez, J. Corlett, S. Myers, S. Prestemon, R. Schlueter, *LBNL*

A Plan for the Development of Superconducting Undulator Prototypes for LCLS-II and Future FELS

P. Emma,

...for the SCU R&D (funded) collaboration: ANL, LBNL, SLAC August 28, 2014

rrrr

Kicking the Can Down the Road (SCU's)...

Proposed by E. Gluskin & N. Vinokurov in 1999 for *LCLS-I* ⇒ *"not ready for SCU"* (15 yrs ago!)

Propose to re-design *LCLS-II* undulator and greatly improve performance (1 TW & 7 keV)?

SCU's operating in ANKA (2005) & APS (2013) right now

Greatest un-tapped potential available for FEL performance

Superconducting Undulator Motivation

Advantages of an <u>SCU</u>:

- Higher magnetic fields allow superior FEL performance.
- No permanent-magnetic material to be damaged by radiation \rightarrow longer life & smaller gaps.
- Reduced (?) resistive wakefield with cold bore (preliminary).
- Much lower vacuum pressure, which limits gas scattering.
- Smaller footprint and simpler K-control than typical, massive adjustable-gap PMU.
 - Easily oriented for vertical polarization*.

SCU's need practical development...

* Vertical polarization allows efficient x-ray transport in horizontal deflections

SCU's Provide Much Higher Fields than PMUs

SCU's Provide Much Higher Fields than PMUs

SCU's Provide Much Higher Fields than PMUs

C. Emma, C. Pellegrini, Z. Huang

- fiii)

C. Emma, C. Pellegrini, Z. Huang

(iii)

C. Emma, C. Pellegrini, Z. Huang

(iii)

	Und. tech.	Nb ₃ Sn	-
	Vac. full gap	4	mm
l	Photon energy	4	keV
	e [–] Energy	6.6	GeV
	Emittance	0.4	μm
	Peak current	4	kA

(iii)

C. Emma, C. Pellegrini, Z. Huang

NATIONAL ACCELERATOR LABORATORY

Argonne

....

C. Emma, C. Pellegrini, Z. Huang

NATIONAL ACCELERATOR LABORATORY

Argonne

....

C. Emma, C. Pellegrini, Z. Huang

Resistive-wall Wake of Cold-bore Undulator

Based on work by **B. Podobedov**, PRSTAB, **12**, 044401 (2009), and new **G. Stupakov, K. Bane** model (*preliminary*)

Resistive-wall Wake of Cold-bore Undulator

.....

Argonne

Based on work by **B. Podobedov**, PRSTAB, **12**, 044401 (2009), and new **G. Stupakov, K. Bane** model (*preliminary*)

Resistive-wall Wake of Cold-bore Undulator

Based on work by **B. Podobedov**, PRSTAB, **12**, 044401 (2009), and new **G. Stupakov, K. Bane** model (*preliminary*)

SCU R&D Plan

ANL...

- Build a 2-m test cryostat (existing design)
- Build & test 1.5-m long *NbTi* prototype und. ($\lambda_u \approx$ 21 mm)
- LBNL...
 - Build & test 1.5-m long Nb_3Sn prototype und. ($\lambda_u \approx$ 19 mm)
 - Develop meas. & tuning schemes (small tuning cryostat)

Together...

- Develop field measurement and correction techniques
- Demonstrate predicted field, field quality, end corrections, and cold-mass integration into cryostat
- Develop conceptual design for full-length SCU in LCLS-II
- Goal: By July 2015, deliver 2 fully functional, 1.5-m long, SCU prototypes meeting LCLS-II HXU spec's

0.6-mm diam. wire, 60-μm braid insulation

0.6-mm diam. wire, 60-μm braid insulation

Undulator Assembly Components - LBNL

Single-turn correction coils "taped" on each side of vacuum chamber

Single-turn correction coils "taped" on each side of vacuum chamber

S. Prestemon, D. Arbelaez, LBNL

S. Prestemon, D. Arbelaez, LBNL

Lower risk, but less field

Lower risk, but less field

Wire pocket (53 turns)

0.7-mm diam. Supercon NbTi SC wire

Lower risk, but less field

Load Lines

Wire pocket (53 turns)

0.7-mm diam. Supercon NbTi SC wire

Short test cores to verify tolerances and recent SCU1 (1.1-m) now powered

Lower risk, but less field

Load Lines

Wire pocket (53 turns)

0.7-mm diam. Supercon NbTi SC wire

Short test cores to verify tolerances and recent SCU1 (1.1-m) now powered

End-Terminations and Field Correctors

0, 51, 100 Amp (Measurements)

End-Terminations and Field Correctors

shows 11 complete coil packages

0, 51, 100 Amp (Measurements)

End-Terminations and Field Correctors

0, 51, 100 Amp (Measurements)

Argonne

CCELERATOR

shows 11 complete coil packages

ANL 2-m Cryostat (to test both magnets)

Existing 2-m cryostat (4K) at APS

- Experience with SCU's at APS
- Each magnet to be tested in this cryostat

rrrrr

ANL 2-m Cryostat (to test both magnets)

Existing 2-m cryostat (4K) at APS

- Experience with SCU's at APS
- Each magnet to be tested in this cryostat

ANL 2-m Cryostat (to test both magnets)

2-m long cryostat; 4 cryocoolers; Loss-free He system

Existing 2-m cryostat (4K) at APS

- Experience with SCU's at APS
- Each magnet to be tested in this cryostat

SCU System Concept for LCLS-II HXU

0.5-m cold breaks 2-m long segments (+quad+BPM+PS) $\lambda_u = 17-19$ mm, Vacuum gap = 4-5 mm 5-m cryostats 500-W cryo-plant at 4 K

Joel Fuerst, ANL

Summary

SCU technology promises a potential leap in FEL performance – needs development now

- LCLS-II HXU can be extended to 7+ keV (1 MHz) and 1 TW (120 Hz) using the same SCU
- R&D is underway re-baseline of LCLS-II is possible, but depends on R&D and LCLS-II project schedule

