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Inverse FEL Background

* Rubicon IFEL experiment recently demonstrated high quality acceleration
of 50 MeV e-beam at BNL ATF in a strongly tapered helical undulator
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What happens if we do the same
experiment in reverse ?

 10.3 um-driven IFEL decelerator.
* Decelerate 90 MeV to 50 MeV using 100 GW input power.

* Potentially demonstrate ~40 % (!!!) energy extraction from a relativistic electron
beam

* For comparison, FELs typically get efficiencies of ~0.1%
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TESSA concept

* Reversing the laser-acceleration process, we can extract most of the
energy from an electron beam provided:
— A microbunched input e-beam

— An intense input seed
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Applications

High efficiency conversion of electron beam energy to coherent
radiation opens door to very high average power light sources.

Wavelength set by e-beam energy and resonant condition -> wide tunability
— High average power IR and visible lasers.
— X-rays.
— EUV-L applications.

LLNL Paladin experiment in the ‘80s showed large conversion efficiency
using tapered undulator and waveguide at 250 GHz

Differences from current optimization tapering schemes for short
wavelength FEL

— Strong tapering (both period and amplitude)

— large seed intensity - much above FEL saturation level —

— Higher initial input energy (so that at the decelerated output energy undulator is
still feasible)



TESSA theory: tapering optimization

* First approximation. Frozen field, small gain regime

— Do not compensate for radiation emission.

— For constant period there is an analytical solution varying only the magnetic field
amplitude (larger gap, weaker permanent magnets, smaller current, etc.)

— Varying also period allows more flexibility and might be technologically simpler.

 Optimum tapering is obtained by matching resonant energy gradient to the
available ponderomotive gradient
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n = 2nN, K,siny.,
* Including diffraction £
— higher intensity smaller spot size LasSiez ——;
— shorter interaction length longer Rayleigh range AR A



Energy (MeV)

Nocibur Genesis simulation

— Input power: 100 GW
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Application to short wavelengths:
Where to get the high intensity seed?

e QOscillator configuration

— Low gain regime TessAundulator
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— Could use low rep-rate igniter pulse  inreprate eveam

— Build-up is complex problem

e Afterburner following FEL amplifier
— Simpler
— Use mirrors to refocus radiation (issues of damage on mirrors?)
— Efficiency limited by seed power.... but

FEL undulator (saturated)
Re-focusing optics
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Low gain vs high gain regime

Low gain
Neglect radiation power increase along the undulator.
Trapping and deceleration will work for any beam current.
Beam-independent efficiency.

Proportional to sqrt (input seed power) 025
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High gain regime

As the radiation power increases we can taper and extract energy more
efficiently | Power grows along the undulator as the particles are
decelerated.

Tapering depends on amplitude of ponderomotive potential o< v/1

But some of the generated power diffracts away (3D effects)
How to optimize?



High Gain TESSA
Genesis Informed Tapering optimization Scheme

Due to strong diffraction, and external seed laser, gain guiding single-
mode formulas not sufficient to describe laser driving intensity
= Solve numerically with help of 3D FEL code -- Genesis!
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= Genesis Informed Tapering Scheme (GITS) optimization

Solve tapering period-by-period

* Run Genesis on a period

* Measure min intensity seen by particles => threshold for capture
* Calculate new period and undulator parameter

e Saves tapering as well as simulated data

GITS offers options to dynamically optimize different simulated e-beam
and radiation parameters: maximize power, minimize detrapping, etc.



Single stage TESSA 14 m long @ 13 nm

Input energy: 750 MeV ‘400?’7" BRI *;
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On—axis

X-ray : Multi TW LCLS

Beam: 14.35 GeV, 4 kA, and
0.3 um emittance
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Time dependent simulation

* Optimized time dependent simulation 120} | —
* Sideband instability causes particles to 100 .
detrap @ ~100 m 80 ¢ W B
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Conclusion

TESSA - tapering enhanced stimulated superradiant amplifier
— Strongly tapered helical undulator
— Refocus FEL radiation to drive beyond FEL saturation
— 3D simulation guided tapering

“Nocibur” low gain demonstration at ATF will be first step.

— Measure energy beam spectrum, CO2 output power, mode quality, spectrum.
— All hardware required for the experiment already in hand !

Strongly driven system: effects of energy spread and
emittance reduced compared to SASE FEL.

Applications in various spectral ranges
Many interesting points

— Mirrors to refocus radiation
— Start-up in oscillator configuration
— Side-band supression



Efficiency estimate: Low gain regime

* Definen = Yoo
Yo
* For constant K, and small efficiency n = 2nN K siny,
* Taking into account diffraction, we need to find a compromise
between: L_
— higher intensity smaller spot size Laser i/,
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— shorter interaction length longer Rayleigh range E-beam
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