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Abstract 
In principle, a ring confocal resonator allows for the 

use of a short Rayleigh length without the extreme sensi-
tivity to mirror steering typical in a near-concentric reso-
nator [1]. One possible weakness of such a resonator is 
that the cavity length is no longer independent of the 
mirror steering. This is one of the strengths of a linear 
resonator. In this presentation, it is shown that, in a simple 
2-dimensional corner cube type ring confocal resonator, 
the cavity length is, in fact, not dependent on the mirror 
steering to first order in the mirror angles. Thus the ring-
confocal resonator might be a very easy-to-operate and 
stable resonator for short Rayleigh range operation in FEL 
oscillators. 

INTRODUCTION 
It is well known that the optical mode in a confocal 

resonator has much lower sensitivity to mirror steering 
than a near-concentric design. Since the mode size in the 
return path of the confocal resonator is rather large it is 
more practical to make the confocal resonator for an FEL 
in a ring configuration so that the mode does not have to 
pass through a narrow wiggler gap on the return leg. This 
may lead to a couple of problems. The first is astigma-
tism, which may be addressed using cylindrical or toroi-
dal optics. The second is a potential coupling of mirror 
steering to cavity length changes. Decoupling of cavity 
length and mirror steering, a given in linear resonators, 
makes laser optimization very straightforward. A depend-
ence of cavity length on mirror steering would greatly 
complicate operation of the FEL. This note will derive the 
change in cavity length as each mirror is steered in a ring 
confocal resonator. As will be seen, the properties of the 
ring resonator tend to make the cavity length extremely 
insensitive to mirror steering. 

DEFINITION OF VARIABLES 
Let us first describe the ring confocal resonator and de-

fine our variables.  The resonator is shown in Fig. 1.  The 
two flat mirrors that deflect the beam away from the elec-
tron beam axis are called the flat deflecting optics or 
FDOs.  The curved mirrors that bring the beam back 
towards the wiggler are called the fold mirrors or FMs.  
The angle that the FDOs deflect the beam (twice the angle 
of incidence on the FMs) will be referred to as  The 

transverse separation between the forward and reverse 
legs of the resonator will be represented by B. The dis-
tance between the FDO and the FM is equal to B/sin C. 
The distance from the cavity center (assumed also to be 
the wiggler center) to the FDO is A. The FMs are concave 
mirrors that collimate the beam that emerges from the 
wiggler. The radius of curvature for a ring confocal reso-
nator should be Reff = 2(A+C). The actual radius of curva-
ture will be longer by sec( ). It is useful to know the 
effective radius of curvature as a function of the round 
trip distance in the resonator. Since the distance in the 
backleg between the FDO and the FM is C•cos( ), the 
round trip cavity length Lrt=2(2A+C(1+cos( ))). Using 
this we have Reff = Lrt/2 + C(1-cos( )). 

NORMAL VIBRATION MODES 
To calculate the change in cavity length for a given mir-

ror angle tilt it is useful to define normal modes of the 
resonator that are linear combinations of all four mirrors. 
Since the angular shifts are all linear one can represent a 
change in the angle of any one mirror as a linear combina-
tion of these four modes. Since there are four mirrors, it is 
possible to define four normal modes related to the four 
angles via a non-singular matrix to be derived below. 
There is a default beam path that goes through the center 
of the wiggler, hits the centers of each mirror, and returns 
a distance B away from the wiggler in the backleg. The 
default beam path is parallel in the forward and back-
wards directions in the resonator. Define the following 
four modes of the beam path with respect to the default 
beam path. Assume that the mirrors rotate about the point 
that the default beam path intersects the mirror surface: 
 

 Mode 1 – In this mode the light paths are still 
parallel in the forward and backward direc-
tions but they move either towards the center 
of the ring or away from the center. 

 Mode 2 – In this mode the light path is parallel 
in the forward and backward directions but the 
two paths both move in the same direction 
with respect to the default beam path.   

 Mode 3 – In this mode the light path goes 
through the center of the wiggler and is a dis-
tance B away in the backleg at that point.  The 
path goes through the wiggler at an angle and 
returns with the opposite angle so the mode 
looks wedged from above. 

 Mode 4 – In this mode the light path again 
goes through the center of the wiggler at an 
angle but the angle in the backleg is the same 
as in the forward leg.  The mode as a whole is 
tilted. 

 ____________________________________________  
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Any mode can be made from these four. It is possible to 
define a matrix that relates the modes to the individual 
mirror angles. This matrix can then be inverted to give the 
individual mode changes for a given tilt in one mirror. 

In this note, the discussion is limited to one plane.  Any 
changes in cavity length due to vertical steering should be 
second order in the angle (which is a very small quantity) 
and so should be negligible. 

To derive the normal modes in terms of the mirror an-
gles it is useful to review the nature of a two-dimensional 
corner cube.  The beam will exit parallel to the input 
beam unless an angular error between the two mirrors is 
introduced.  Movement of the beam to one side on the 
entrance automatically leads to movement in the same 
direction on the output (i.e. beam left motion stays beam 
left unlike a mirror where beam left turns into beam 
right).  The curvature in the FM does lead to behavior 
different from a corner cube.  Changes in position on the 
FM lead to a relative change in the angular orientation 
between the mirrors.  This has the effect of stabilizing the 
mode so that it tends to move towards the position where 
the input and output angles are the same. 

Mode 1 
In this mode one only rotates the two FMs.  If both of 

these mirrors turn the opposite direction then the separa-
tion between the forward and backward beams increases 
and decreases but the beam path is parallel to the default 
path.  Devine the transverse shift as , where a positive  
is away from the ring center. To first order, the FDO and 
the FM act as a two-dimensional corner cube. Thus, the 
exit beam from the two mirrors is also shifted away from 
the center by the same amount. Since the beam has moved 
on the FM however, it is necessary to steer the FM slight-
ly to maintain the exit beam parallel to the input beam to 
correct for the angle caused by the mirror curvature.  The 
angle necessary to correct the angle is /Reff. The geome-
try of this is shown in Fig. 2 where all offsets have been 
greatly exaggerated.  In fact, the mirror steering angles 
are in μrad or less and the bend angles are in rad.  The 
mode movements are in hundreds of microns while the 
beam separation is on the order of a meter. 

To see how sensitive this is, let us consider an example. 
Assume a ring confocal resonator with an angle  = 30° 
and a distance B = 68.6 cm. Assume that the radius of 
curvature in the plane of the ring is given by the formula 
above and that Lrt=64.084 m.  The effective ROC should 
therefore be 32.23 meters and the actual ROC must be 

33.36 m.  In this case a one microradian tilt in both FMs 
in the opposite directions will move the mode by 32.2 μm 
both in the wiggler and in the backleg (both away from 
the ring center).  The 1/e2

 waist size for a Rayleigh range 
of 70 cm and a wavelength of 1.06 μm is 486 μm so this 
is quite a small shift compared to the mode size. 
 

 
Figure 2: Geometry for Mode 1 shift.  Both parallel rays 
move out from the center by a distance . The black curve 
is the default path and the red is the position for mode 1. 

Mode 2 
This mode requires all four mirrors to move.  The mode 

is a bit unnatural since one is fighting the tendency of the 
mode to move the same direction on the output as at the 
input.  One wants the FDO and the FM to both rotate 
approximately the same amount but the FM must rotate a 
bit less to account for its ROC.   For a common axis shift 
of distance , the FDO must shift by an angle FDO = /C.  
This actually moves the return leg up by 2  so that the 
beam moves in the opposite direction instead of the same 
direction. It also changes the angle of the beam by 2 FDO 
and this must be compensated for by also rotating the FM 
by about the same amount.  Since we have moved up on 
the FM however, there is an extra angle provided by the 
curvature so the FM does not have to move quite so far.  
The net result is: 

 

The final expression in parentheses is equal to 0.957 for 
the numerical example above.  Thus the two mirrors move 
almost the same amount.  The mirrors at the opposite end 
of the cavity rotate in the opposite direction, with the FM 
again rotating a bit less than the FDO.  The geometry for 

Figure 1: Layout of the ring confocal resonator with the leg lengths and mirror labels defined. 
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this configuration is shown in Fig. 3.  Note that for the 
numerical example above, the distance in microns is close 
to the tilt angle of the mirrors in micro-radians. The mode 
moves by 1.37 μm for 1 μrad of mirror tilt.  This is 23.5 
times less sensitive than the movement in Mode 1. 

 
Figure 3: Geometry of Mode 2.  Here both mirror rotate 
by a positive angle.  The FM rotates slightly less than the 
FDO to account for the radius of curvature.  The angles 
shown are exaggerated by about a factor of 1000 to show 
that they occur. The black path is the default position and 
the red path is the rotated position. 

Mode 3 
In this mode we again only need rotate the FMs.  If 

they are rotated in the same direction we find that the 
separation between the forward and back branches is 
smaller on the upstream end than at the downstream end 
for a negative (clockwise) angle.  The geometry looks the 
same as Fig. 2 except that the input and return ray for 
mode 3 are slightly converging so that they intersect with 
the default rays at the position of the center of the wig-
gler.  If a ray leaves the wiggler center at an angle  with 
respect to the default ray, it will be offset by a distance 

Reff/2 at the FM.  Since the purpose of this mirror is to 
collimate the beam, the exit ray will be parallel to the 
default ray if the FM is not rotated.  To get the return ray 
to intersect the default ray at the position of the wiggler 
center one must rotate the FM by an angle: 

 

So to create a mode with rays at an angle Mode3 with 
respect to the default ray, one must rotate the FMs by a 
little more than half the mode angle  

 

Remember that in this case the two FMs rotate in the 
same sense, i.e. both positive or both negative angles.  For 
the numerical example above the fraction in this equation 
is 0.506 so the wedge angle is essentially twice the mirror 
rotation. 

 
Figure 4: Geometry of Mode 3. The green rays are the 
upstream rays mirrored onto the downstream end.  The 
red rays are the downstream rays. The blue lines are per-
pendicular to the return leg rays 

Mode 4 
Finally in Mode 4 all four mirrors rotate the same di-

rection but the FMs rotate slightly less than the FDOs. 
This looks just like Fig. 3 except that the mode 4 rays are 
at a slight angle with respect to the default rays and they 
are in opposite directions on the upstream and down-
stream mirrors. The analysis is the same as for Mode 2 
except that the quantity  is equal to (A+ C cos ) where 

 is the angle of the mode with respect to the default 
mode.  The ratio between the mode rotation  and the 
mirror tilt FDO is found from 

For the parameters of the resonator detailed above, the 
ratio is about 12 to 1, so you have to tilt all the mirrors by 
12 μrad to get 1 μrad of mode tilt. 

CHANGE IN CAVITY LENGTH 
Now that we have defined the modes let us derive the 

change in the cavity length for each mode compared to 
the default rays.  The blue vertical lines in Fig. 2 show the 
intersections between a vertical line and the point where 
the rays hit the FDO.  The distance between the left blue 
line and its corresponding line on the other end of the 
resonator is obviously the same for the default rays and 
the Mode 1 rays.  Note that, by construction, the red lines 
are parallel to the black lines and therefore, all the angles 
of incidence and angles of reflection are the same.  Any 
change in the cavity length would be due to a difference 
in the path length from the left blue line back to the left 
blue line.  The distance along the red path is simply 

 

The distance along the black path is the same but with-
out the 2  term and the extra distance 2s where 
s= cot( ).  The path difference is then: 
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It can be shown that the expression in brackets is iden-
tically zero via trigonometric identities.  Mode 1 therefore 
does not change the cavity length with respect to the 
default path. 

Mode 2 is more complicated due to the fact that the an-
gles are now not the same. The opening angle for the 
Mode 2 path in Fig. 3 (red lines) is now 

. The distance along the path for Mode 2 is then: 

 

The path for the default ray from the left blue line back 
to the left blue line is 

 

It is useful to use the relations (true for small ) 

.  
The change in path length is then  

 

where we have used the expression C=B csc( ). We now 
have: 

 

which is again zero. So the path length change for mode 2 
is also zero to first order in the angular offsets. 

For Mode 3 we can use the anti-symmetric nature of 
the mode to argue that any change in the mode orbit 
length in one half of the resonator is cancelled out in the 
other half. In Fig. 4 we show the geometry for Mode 3 
with the upstream end reflected onto the downstream end.  
The upstream end is represented by the green rays and the 
downstream end is represented by the red rays. 

One can see that each change from the default rays is 
mirrored in the opposite end. When the calculation is 
done carefully one finds, in fact, that the path difference 
from the default rays is –B Mode3 on the downstream end 
and B Mode3 on the upstream end to first order in Mode3 so 
the net change in path is zero for Mode 3. 

The same asymmetry argument can be used for Mode 4 
to state that, since the path length change for Mode 2 is 
zero, the path length change for Mode 4 must also be 
zero. 

Since any mode in the resonator can be derived from a 
linear combination of these four modes and since each of 
the modes has no change in the cavity length one comes 
to the startling conclusion that the ring confocal resonator 

round trip path length is independent of the mirror steer-
ing to first order in the mirror tilt angles. 

RELATION BETWEEN INDIVIDUAL 
MIRROR STEERING AND MODE SHIFTS 

It is useful to derive the relation between the mode 
changes, which may involve a change in all four mirrors 
to the mode changes when only one mirror is shifted.  Let 
us first number the mirrors as 1 through 4 with the up-
stream FDO being 1 and the upstream FM as mirror 4.  
Let us also define the quantities G=(A+Ccos )/(A+C), 
H=(A+C), F=(1-C/Reff) and J=C/(A+cos ).  As noted 
above F and G are usually very close to but slightly less 
than unity. The quantity 2H is the same as the effective 
radius of curvature of the FMs and J is usually small 
compared to one. We can represent the modes by the 
following steering operator: 

 

When the angle vector ( , 2, 3, 4) is multiplied by 
this matrix it will give a set of mode amplitudes.  Modes 1 
and 2 are defined by the distances that the axes move 
while Modes 3 and 4 are defined by the angles that the 
rays tilt. One can also invert this matrix to get the angles 
for a given combination of modes: 

 

When this is multiplied by a vector of the mode ampli-
tudes (M1, M2, M3, M4) we get the angle vector ( , 2, 3, 

4). 
It is worth noting some features of this resonator.   

1. Modes 2 and 4 are suppressed due to the na-
ture of the end mirrors as corner cubes.  In fact 
the fold mirrors do not change modes 2 and 4 
at all.  

2. The resonator mode position in the wiggler 
(via mode 1) is fairly sensitive to the tilt of any 
of the 4 mirrors.  For the example resonator, 
the beam moves 161 μm in the wiggler for a 
10 μrad shift in either of the fold mirrors and 
150 μm for a 10 μrad shift in either FDO.  

3. The mode is extremely stable in angle.  To get 
100 μrad of mode tilt one needs 2.2 mrad of 
tilt in mode 4 and 50 μrad in mode 3. 

CONCLUSION 
The conclusion is a bit counter-intuitive but is con-

sistent with the use of corner cubes in interferometers, 
where path length changes are critical.  Since each of the 
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modes does not change the cavity length (to first order in 
the mirror tilts), and since any mode may be produced by 
a linear combination of the four modes, then the resonator 
mode is independent of the mirror tilts.  The counter-
intuitive nature comes from the nature of a corner cube.  
When one turns a corner cube, the beam comes back 
exactly along the original angle independent of the angle 
of the cube.  The route through the cube also changes but 
in such a way that the length change in one leg is exactly 
compensated by the other.  The net change is then exactly 
zero. 
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