
SPECTRAL LIMITS AND FREQUENCY SUM-RULE OF CURRENT AND
RADIATION NOISE MEASUREMENT∗

R. Ianconescu, University of Tel-Aviv, Tel-Aviv and Shenkar College, Ramat Gan, Israel
A. Gover, A. Nause, University of Tel-Aviv, Tel-Aviv, Israel

Abstract
The current noise spectrum of an electron beam is gen-

erally considered white and expressed by the shot-noise
formula (eI0). It is possible to control the spectral energy
of a random electron beam current by longitudinal space
charge micro-dynamics and dispersive transport. Both noise
suppression (relative to eI0) and noise enhancement have
been demonstrated, exhibiting sub/super-Poissonian particle
distribution statistics, respectively. We present a general
theory for the current noise of an e-beam and its radiation
emission in the entire spectrum. The measurable current
noise spectrum is not white. It is cut-off at high frequen-
cies, limited by the measurement length and the beam axial
momentum spread (fundamentally limited by quantum un-
certainty). We show that under certain conditions the current
noise spectrum satisfies a frequency sum-rule: exhibiting
noise enhancement in one part of the spectrum when sup-
pressed at another part and vice versa. The spontaneous
emission (radiation noise) into a single radiation mode or
single direction in any scheme (OTR, Undulator etc.) is
sub-radiant when the beam current is sub-Poissonian and
vice versa, but the sum-rule does not apply.

INTRODUCTION
Electron beam current-noise is an inherent property of

any particulate current resulting from the microscopic dis-
continuity of charge flow in a charged particles beam. The
conventional assumption regarding the current noise in an ac-
celerated electron beam is that it is limited by the Shot-Noise
formula:

SIshot = eI0 (−∞ < f < ∞), (1)

where I0 is the average current of a continuous coasting elec-
tron beam and SI ( f ) is the power spectral density (PSD) of
the current. This expression is a direct consequence of the
assumption that the beam particles positions are random un-
correlated uniform variables, so that the number of particles
in each interval satisfies the Poisson statistics.

It has been known [1] that as an electron beam propagates,
the Coulomb interaction between the particles results in
correlation between the particle positions and therefore, the
particles statistics, as well as their current PSD may deviate
from the shot-noise formula (1). In particular it has been
shown that Eq. (1), is not even a lower limit for random
electron beam noise, and taking advantage of the Coulomb
interaction effect, or the longitudinal space charge (LSC)
interaction of random bunching, it is possible to suppress
∗ This research was supported by a grant from the United States-Israel
Binational Science Foundation(BSF), Jerusalem, ISRAEL

the current noise below the shot-noise level (current noise
suppression) at least in part of the spectrum.

Recently it has been shown theoretically [2–8] and exper-
imentally [9, 10] that shot-noise suppression is possible in
high quality e-beams at optical frequencies. This noise sup-
pression process can be achieved by transport of the beam
along a drift section of quarter plasma oscillation length [9]
or by transport through a drift section and a subsequent dis-
persive section [10]. In the later case, if the dispersion effect
(presented by the parameter R56) is large, the opposite effect
- noise gain - is achieved, at least in part of the spectrum
(micro-bunching instability [11]).

Current noise is the source of incoherent spontaneous
emission of radiation (radiation noise) in all electron-beam
radiation sources, and in particular Undulator radiation and
SASE (Self Amplified Spontaneous Emission) in FEL [8].
For this reason controlling radiation noise is one of the rea-
sons of interest in controlling electron-beam current noise at
short wavelengths. In innovative temporally coherent seed-
injected FELs [12] incoherent SASE radiation limits the
coherence of the FEL output and imposes stringent demands
on the power level of the seed radiation source [8]. Hence
current noise suppression of the e-beam before injection into
the wiggler is desirable. On the other hand, control over the
e-beam current shot-noise can also be useful for the opposite
purpose: enhancing SASE radiation [13]. This process has
been recently demonstrated by Marinelli et al [14] and may
possibly be used to produce high power radiation in SASE
FELs with shorter wigglers.

MEASUREMENTS OF CURRENT-NOISE
SPECTRUM

Determining the spectral limits of noise-control, and par-
ticularly noise-suppression, is a task of prime interest in
connection to electron-beam transport in applications of
electron beams for emission of coherent radiation (FEL). Of
primary importance is the short wavelength limit, as there is
significant interest in developing coherent (low noise) X-UV
FELs.
The short wavelength limit of current noise suppression

by drift over a quarter plasma wavelength is the Debye con-
dition: λ > λD , where the Debye wavelength λD is deter-
mined by the axial velocity spread of the beam due to finite
emittance or energy spread [15]. A similar condition applies
also to the drift/dispersion noise suppression scheme where
the dispersive section enhances the optical phase-spread at
short wavelength [15]. The LSC noise-suppression effect is
also limited at low frequencies (though this limit is of less
interest). The low frequency limitation of LSC interaction
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is due to the 3-D fringing effect in a finite cross-section
beam [3].

While the shot-noise formula (1) predicts a “white noise”
spectrum for a continuous uncorrelated electron beam as
a direct result from the assumption of Poisson statistics,
the noise-suppressed (or noise-enhanced) electron beam is
governed by more complex statistics, and its spectrum is
certainly not “white”. To understand the nature of this spec-
trum we take a close look into the derivation of the current
noise formulae, and in particular pay attention to physical
limitations associated with the measurement of the spectrum.
Since optical frequency current cannot be measured di-

rectly, the only way to measure the current optical frequency
noise spectrum is by measuring the radiation that the e-beam
current emits in any kind of radiation scheme, in which the
optical radiation spectrum is proportional to the current noise
spectrum. Most measurements of this kind were done using
Optical Transition Radiation (OTR) [16]. Another obvious
scheme is Undulator radiation, which is the spontaneous
emission radiation of an FEL. In any case it is important to
point out that any physical measurement is done during a
finite time, which in the present case is the transit time of the
electron through the radiation device Ttr = Ltr/(βc), where
Ltr is the radiative emission length, namely the formation
length L f = βγλ in the case of OTR and the Undulator
length Lu in the case of Undulator radiation.

The finite measurement time and the finite radiation emis-
sion length have implications on the applicability of the
current noise spectral measurement of a correlated electron
beam as well as an uncorrelated electron beam (shot-noise):
the interaction length must be short enough in order to make
sure that one measures spontaneous emission only and not
SASE, and that the current noise stays constant along the
transit length, and that transition of current noise to veloc-
ity noise though LSC micro-dynamic processes [8, 15] is
negligible.
Under these limiting assumptions, a general formulation

was presented in [17] for the calculation of the spectral ra-
diation energy emission by a finite pulse of Ne electrons
entering the radiative interaction region at ordered times
(pre-bunched) or random times. The current of the electron
pulse is represented by:

I (t) = −e
Ne∑
j=1

δ(t − t0 j ), (2)

where t0 j is the time at which electron j is at z = 0. Its
spectral components are

Ĭ ( f ) = −e
Ne∑
j=1

ei2π f t0 j (3)

where we define the Fourier transform

Ĭ ( f ) =
∫ ∞

−∞

dt I (t) exp(i2π f t), (4)

The energy spectral density (ESD) of the finite pulse is

pI ( f ) = 〈| Ĭ ( f ) |2〉 = e2
〈�������

Ne∑
j=1

ei2π f t0 j
�������

2〉
, (5)

here 〈〉 represents statistical average over the arrival times
t0 j . For a continuous coasting beam one usually defines the
power spectral density (PSD) by SI ( f ) = lim

T→∞

1
T 〈| ĬT ( f ) |2,

where ĬT ( f ) is the Fourier transform in the time window T ,
which reduces for the case of a rectangular finite pulse of
time Tb to

SI ( f ) =
1

Tb
〈| Ĭ ( f ) |2〉 =

pI ( f )
Tb

, (6)

The spontaneous emission formulation [17] is based on
a modal expansion of the radiation field in terms of any
complete set of eigenmodes, where the set may be discrete
or continuous modes of free space (plane-waves).

The derivation leads to a general proportionality relation
of the ESD of the emitted radiation energy per mode (in units
of Joule/Hz) and the ESD of the current. The proportionality
factor can be calculated specifically for any free electron
radiation scheme like Undulator radiation and OTR [9,17]
then be used for the calculation of the current ESD as long
as one measures the radiation energy per mode, or in the
case of free space plane waves - the far field radiation ESD
per unit solid angle.
As shown in the next sections the detailed analysis of

the current noise and the consequent radiation noise shows
that the ESD of the current and the radiation deviate from
the simple white shot-noise of formula (1) even when the
e-beam is random and uncorrelated. At low frequencies
(long wavelengths)

f < 1/Tb (7)

(where Tb is the pulse duration) one expects enhancement
of the current noise due to the coherent contribution (DC
part) of the pulse shape function to the Fourier transform.
This effect gives rise to supper-radiant emission at low fre-
quencies [17].
Another effect colors the measurable spectral energy of

the current noise, and cuts it off at high frequencies. This
effect is associated with the inherent uncertainty in the par-
ticle position during the measurement of the current noise.
Because noise measurement is never instantaneous and be-
cause there is always inevitable uncertainty in the position
σ or crossing time σt = σ/(βc), of the particles either
because of initial axial velocity spread, or fundamentally,
because of quantum (Heisenberg) momentum uncertainty,
the position of each particle in the calculation of the current
ESD (5) must be averaged over the probability function of
the position uncertainty (or t0 j ). This is done in the follow-
ing sections, and also resolves the problem of a seemingly
infinite noise energy when one integrates the ESD of point
particles (5) over all frequencies.
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An interesting observation, that was noted by Alex Chao
[18] for current-noise spectrum, suggests a “sum-rule theo-
rem”, namely that the integral of the noise spectrum stays
constant even when the noise is suppressed or enhanced in
some part of the spectrum. This theorem and its limitations
are examined in the following sections, using our finite noise
energy model. Simple examples for noise suppression or
enhancement (sub-Poissonian or super-Poissonian distribu-
tions) are examined.

THE DERIVATION OF THE SHOT-NOISE
FOR A CONTINUOUS COASTING BEAM

OF POINT CHARGES
We consider a bunch of particles, each one of charge e,

all moving with a uniform velocity v = βc in the ẑ direction.
The bunch length is Lb → ∞, the number of charges is
Ne → ∞, so that Ne/Tb is finite, resulting in the average
DC current I0 = eNe/Tb . Each charge is uniformly dis-
tributed in the interval [0,Lb], i.e. has equal probability to
be located anywhere in the bunch. To each space coordinate
we associate a time interval coordinate, so that Tb ≡ Lb/v
is the time interval of the entire bunch. Hence counting
charges in a space interval ∆z at a given time is equivalent to
counting charges that pass through a given point z during a
time interval ∆t = ∆z/v. The bunch length Tb is divided in
sub-intervals ∆t, so that the current measured in the interval
∆t is I = en/∆t, where n is a random variable representing
the number of charges in the given interval ∆t.

The probability to find a charge in an interval δt � ∆t is
p = Neδt/Tb . Because the probability p is extremely small,
one may neglect the possibility of having 2 or more charges
in the interval δt, considering the occurrence of the event of
having a charge in δt as N = ∆t/δt Bernoulli trials, so that n
is binomial distributed with N trials and probability p, with
average mn = N p and variance σ2

n = N p(1 − p). Because
N is very large and p is very small, n may be approximated
by Poisson distribution with parameter λ = N p = Ne∆t/Tb ,
so that its average and variance are mn = σ

2
n = λ.

It follows that when the location is distributed uniformly,
the number of charges in any interval ∆t is Poisson dis-
tributed, i.e. having the mean equal to the variance.
So if one measures the current I in a time interval ∆t,

one obtains I = en/∆t, so that the current is the random
variable n multiplied by e/∆t. Therefore the average cur-
rent is mI = emn/∆t = eλ/∆t ≡ I0 and its variance is
σ2

I = (e/∆t)2σ2
n = (e/∆t)2λ = eI0/∆t. Considering

∆t = 1/(2B) to be the Nyquist interval, where 2B is the
two-sided bandwidth, we obtain σ2

I = 2eI0B. For point
charges, the current at time t is independent from the cur-
rent at time t + τ, so the auto-covariance matrix is diag-
onal CI (τ) ≡ CI (t )I (t+τ) = eI0δ(τ) and its Fourier trans-
form is eI0 having the area of σ2

I in the bandwidth range
−B < f < B. Therefore the auto-covariance function is

CI (τ) = eI0δ(τ), (8)

and from random processes theory, the auto-correlation func-
tion is the DC square plus the auto-covariance function:

RI (τ) = I20 + eI0δ(τ), (9)

and the PSD is the Fourier transform of the above

SI ( f ) = I20 δ( f ) + eI0 ≡ I20 δ( f ) + SIshot , (10)

where the flat spectral density is SIshot in formula (1).
We saw in this section that if the charges are uniformly

distributed over the interval Tb , the number of charges is
Poisson distributed in each sub-interval ∆t. The opposite
is not necessarily true: if the number of charges is Poisson
distributed in a sub-interval ∆t we only know that it is also
Poisson distributed in any sub-interval bigger than ∆t (i.e.
for frequencies smaller than 1/(2∆t)), but about smaller
intervals (higher frequencies) we don’t know anything, and
this depends on how the charges are distributed inside ∆t. It
is to be mentioned that the beam drift dynamics establishes
the distribution of the charges locations and this location
distribution establishes the statistics of the current, i.e. the
statistics of the random variable n. In this work we do not
use beam dynamics, but we would examine how changes in
the statistics of n influence the spectrum.

THE FINITE PULSE ESD AND THE SUM
RULE

Expression (10) describes an ideal Shot noise PSD, for a
coasting beam. In this section we analyze the energy spec-
tral density (ESD) for a finite beam of duration Tb and the
connection to the coasting beam PSD.

Expanding Eq. (5), we get

pI ( f ) =e2
〈 Ne∑
j=1

Ne∑
k=1

ei2π f (t0 j−t0k )
〉
=

e2Ne + e2
〈 Ne∑
j=1

Ne∑
k=1
k, j

ei2π f (t0 j−t0k )
〉

(11)

The first part of the result was obtained by summing over
j = k and represents the independent frequency ESD Shot
noise term:

pI (shot) ≡ e2Ne = TbeI0, (12)
which results in the PSD Shot noise term eI0 in Eq. (10)
if divided by Tb . The second part should average to 0 for
f , 0, but it has a contribution for f ' 0. This contribution
may be approximated for Ne � 1 by replacing the sum by
an integral on dt and setting dt ' Tb/Ne , as follows

e2
〈 Ne∑
j=1

Ne∑
k=1
k, j

ei2π f (t0 j−t0k )
〉
'e2

�����
Ne

Tb

∫ Tb

0
ei2π f tdt

�����

2

=

I20T2
b sinc

2( f Tb ). (13)

This part, divided by Tb represents the δ( f ) in Eq. (10),
given that lim

Tb→∞
Tb sinc2( f Tb ) = δ( f ).
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In addition, as mentioned before, there is always uncer-
tainty in the particle axial momentum - either because of
technical momentum spread of the electron beam, or fun-
damentally because of quantum limits (Heisenberg’s uncer-
tainty principle). Therefore we shall consider the size of the
charge to be finite, so that δ(t − t0 j ) in Eq. (2) is replaced by

1√
2πσt

exp
(
−

(t−t0 j )2

2σ2
t

)
, so that σt represents the uncertainty

in the arrival time of a charge.
Repeating the Fourier transform on the current for

charges of finite size, the exp(i2π f t0 j ) are replaced by
exp(i2π f t0 j ) exp

[
− 1

2 f 2(2πσt )2
]
, so that the Fourier trans-

form of the current should be multiplied by the factor
exp

[
− 1

2 f 2(2πσt )2
]
.

This implies that the ESD in Eq (5) should be multiplied
by the square of the above term: e− f

2 (2πσt )2 , so that the ESD
of the current is described by:

pI ( f ) = e2[N2
e sinc2( f Tb ) + Ne]e− f

2 (2πσt )2 . (14)

This means that very close in time measurements of cur-
rent are dependent. For this purpose let us consider the
Tb sinc2( f Tb ) ' δ( f ) in Eq. (14), divide by Tb and inverse
Fourier the non delta part. This gives a more accurate auto-
covariance function

CI (finite size charges)(τ) = eI0
1

2
√
πσt

exp
(
−τ2

4σ2
t

)
, (15)

which means that neighbor measurements of current done
on time intervals of the order of the arrival uncertainty σt

are dependent.

The sum rule
The total energy in the ESD may be analyzed using Par-

seval theorem. If f (t) and f̆ ( f ) are a Fourier transform
pair ∫ ∞

−∞

| f (t) |2dt =
∫ ∞

−∞

| f̆ ( f ) |2df (16)

Averaging on both sides and using the ESD definition in
Eq. (5), we obtain from Parseval theorem〈∫ Tb

0
I2(t)dt

〉
=

∫ ∞

−∞

pI ( f )df = 2
∫ ∞

0
pI ( f )df (17)

where the last equality uses the fact that the ESD is an even
function. For point particles (canceling e2 on both sides) it
becomes:〈∫ Tb

0

*.
,

Ne∑
j=1

δ(t − t0 j )
+/
-

2

dt
〉
= 2

∫ ∞

0

�������

Ne∑
j=1

exp(i2π f t0 j )
�������

2

df

(18)
This sum rule, was noted by Alex Chao [18]. It implies

that the LHS is insensitive to particles positions (being δ2
for point particles), hence the RHS must be constant, and
therefore if there is noise suppression (homogenization) in
one part of the spectrum, there must be noise enhancement
in another part.

However, the problem for point particles is that the above
constant is infinite, because the δ2 function is ill defined.
The solution: any physical measurement of current noise
spectrum (OTR, Undulator radiation) takes place during
a finite beam transit time, so that during the measurement
there is inherent uncertainty in the particle location (σ) either
because of momentum spread or fundamentally because of
quantum (Heisenberg) principle. This consideration sets the
constant to be finite, but sets a limit on the validity of the
sum-rule (particles overlap).
Therefore the sum-rule is valid under the limitations of

the overlap condition, and we may evaluate both sides of
(17) for the case of finite size charges. The LHS of Eq. (17)
results in〈∫ Tb

0
I2(t)dt

〉
=

∫ Tb

0
dt *.

,

Ne∑
j=1

e2
√
2πσt

exp *
,
−

(t − t0 j )2

2σ2
t

+
-

+/
-

2

'
Nee2

2
√
πσt

, (19)

for any realization of I (t), provided the gaussians do not
overlap, i.e. if

σt � Tb/Ne . (20)

or using the definition of I0 the condition becomes

I0 � e/σt , (21)

hence is valid for low currents. The RHS of Eq. (17) results
in

2
∫ ∞

0
pI ( f )df ' e2Ne

(
1

2
√
πσt

+
Ne

Tb

)
, (22)

provided the Tb sinc2( f Tb ) in Eq. (14) is narrow enough to
be approximated by δ( f ) and hence not to be affected by the
Gaussian decay e− f

2 (2πσt )2 . Indeed the results in Eqs (19)
and (22) coincide if condition (20) is satisfied. It is easy to
check that one full overlap of 2 charges increases the area
by 1√

πσt
, so that partial overlaps increase by less than that.

SIMULATIONS OF THE SUM-RULE
CONSERVATION

In Figure 1 we calculate the normalized ESD
pI ( f )/pI (shot) vs normalized frequency f Tb for a
bunch of Ne = 500 charges, where the bunch duration
is Tb = 500 time units and the arrival uncertainty is
σt =

Tb/Ne

80 = 0.0125.
Next we examine sub and super Poissonian distributions.

The interval Tb is divided into M sub-intervals, so given
Ne = 500 the average number of charges in each sub-interval
is Ne/M . Choosing for the number of charges in each sub-
interval a Poisson random variable with average Ne/M , or a
Gaussian random variable with average Ne/N and standard
deviation

√
Ne/M, and spreading the charges by uniform

distribution inside the sub-interval, gives a Poissonian re-
alization. The PSD is calculated with Eq. 6, and the aver-
aging is done over 200 realizations, resulting in Poissonian
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Figure 1: The normalized PSD of the current pI ( f )/pI (shot).
The location for each charge is randomly chosen by uni-
form distribution in the interval [0,Tb], hence the number
of charges in each sub-interval is Poisson distributed. The
ESD is calculated with Eq. 5, and the averaging is done over
200 realizations. In the flat region we get 1 by definition. At
f Tb = 1 we see the first 0 of the sinc2 behavior for low fre-
quencies, and for f Tb → 0 (left to the plot) the normalized
ESD tends to I20T2

b
/pI (shot) = Ne . At f Tb = Tb/(2πσt ) the

normalized ESD decays to e−1. The total area under the
curve is 11392, which compares well with Nee

2

2
√
πσt
= 11284.

PSD, which is identical to the PSD in Figure 1. Using the
same procedure, with a Gaussian distribution of standard
deviation 2

√
Ne/M or 0.5

√
Ne/M , results in the super and

sub-Poissonian PSDs. Because the number of charges in an
interval cannot be negative, we cut the distribution below
0, and to keep the correct average we also cut the distri-
bution over 2Ne/M. Therefore the variances obtained are
not exactly the ones chosen. The sub and super-Poissonian
behaviors are in sub-intervals bigger or equal the basic sub-
interval Tb/M (but not too big to compare with Tb !), i.e. for
frequencies smaller than M/(2Tb ) but not 0.
Those sub and super-Poissonian PSDs are implemented

in Figures 2 and 3 for M = 50 and 100 respectively.
In Figure 4 we check how the sum rule described above

is satisfied. When creating sub or super-Poissonian distri-
bution for frequencies below some threshold, to satisfy the
sum rule, the distribution should be of the opposite type in
the complementary range. Unfortunately, this is not easy to
show, because for the super-Poissonian cases created here,
the overlap between charges increases, hence increasing the
total area under the PSD. In addition the frequency regions
for the sub and super-Poissonian are very narrow (below nor-
malized frequency f Tb = 25 or 50 for the cases described
in Figures 2 and 3 respectively), relative to the whole nor-
malized spectrum range of about f Tb = 10000, described
in those cases. Hence in the complementary region one gets
the opposite case, but very close to Poissonian. Also, the
small fluctuations of the PSD make the comparison diffi-
cult. To show how the sum rule works we created a “very”
sub Poissonian distribution in sub-intervals Tb/50, having

0.01

0.1

1

10

100

1 10 100 1000 10000

p
(f

)/
p

I 
(s

h
o

t)

fTb

Sub and super Poissonian in intervals Tb/50

Poissonian
super-Poissonian
sub-Poissonian

Figure 2: Super and sub-Poissonian statistics in sub-intervals
Tb/50. The interval Tb is divided into 50 sub-intervals, so
given Ne = 500 the average number of charges in each
sub-interval is 10. The Poissonian, super-Poissonian and
sub-Poissonian PSDs are shown by the blue, green ad red
curves respectively. The standard deviation for the super-
Poissonian case is 1.8

√
10 instead of the chosen 2

√
10,

while the sub-Poissonian case has a standard deviation very
close to 0.5

√
10. The sub and super-Poissonian behavior

are for frequencies f Tb < 50/2 = 25 (marked with vertical
line), and the super and sub Poissonian PSD values are estab-
lished by the relative variances, i.e. 1.82 and 0.52. The areas
under the spectra are 11523, 11392, 11396 for the super-
Poissonian, Poissonian, and sub-Poissonian, respectively.

a standard deviation close to 0 and compared it with the
Poissonian distribution. The comparison required to smooth
the lines, hence the crossing point is not accurate. We show
the difference between the sub-Poissonian PSD and the Pois-
sonian PSD around the crossing point. Left to the crossing
point, the value is negative and right to the crossing point
the value tends to be small positive.

CONCLUSION
We presented in this work a statistical and spectral analysis

for the current of an electron beam. We showed that even
for random and uncorrelated distribution of the electrons
locations, the ESD is not exactly the shot-noise, but has
supper-radiant properties at low frequencies, and is cut off
at high frequencies due to the uncertainty in the arrival time
of the electrons. The last conclusion solves the “infinite”
energy dilemma of the shot-noise.

We showed that under some conditions, the ESD satisfies
a sum-rule, so when noise is suppressed in some spectral
region it is enhanced in another region. However the validity
of the sum-rule is limited to low current beam electron only
(21), such that the overlap of the uncertainties of the particles
location during transit is smaller than the average spacing
between the particles.
We calculated ESD for different cases of sub or super

Poissonian, and checked the sum-rule, i.e. the (partial) con-
servation of the total energy.
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Figure 3: Super and sub-Poissonian statistics in sub-intervals
Tb/100. The interval Tb is divided into 100 sub-intervals,
so given Ne = 500 the average number of charges in each
sub-interval is 5. The Poissonian, super-Poissonian and sub-
Poissonian PSDs are shown by the blue, green ad red curves
respectively. The standard deviation for the super-Poissonian
case is 1.54

√
10 instead of the chosen 2

√
10, while the

sub-Poissonian case has a standard deviation very close to
0.5
√
10. The sub and super-Poissonian behavior are for

frequencies f Tb < 100/2 = 50 (marked with vertical line)
and the super and sub Poissonian PSD values are established
by the relative variances, i.e. 1.542 and 0.52. The areas
under the spectra are 11599, 11392, 11315 for the super-
Poissonian, Poissonian, and sub-Poissonian, respectively.
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Figure 4: The difference between the PSD for a sub-
Poissonian distribution (at low frequencies) and a Poissonian
distribution. Because of the sum rule, sub-Poissonian spec-
trum becomes higher than the Poissonian spectrum at high
frequencies.
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