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Abstract 

Alpha magnets [1] are useful in a variety of ion-beam 

and low-energy (< 5 MeV) electron-beam transport 

systems as both “switchyard” elements and as bunch 

compressors [2,3]. A unique feature of the alpha-magnet 

is its broad-band achromatic transport. Particles of 

different energies, injected at a specific location and 

angle, will exit at the same location and (symmetry-

reflected) angle but with a different time-of-flight. 

Despite the general usefulness of alpha magnets in low-

energy beam transport and compression schemes, few 

simulation codes support them as native elements. The 

(arguably) most-commonly-used codes used for injector 

design, PARMELA [4], ASTRA [5] and GPT [6] (listed 

in order of their release) support tracking of space-charge-

dominated beams through dipole magnets, but do not 

support alpha magnets. As a result, these codes are unable 

to directly model a useful and interesting beam transport 

device. 

We present an approximate method for simulating an 

alpha magnet in a tracking code using dipole elements. As 

the simulation code elegant [7] supports alpha magnets as 

well as multiple dipole models, it is used to provide a 

basic check of the approximation and a means of 

estimating the induced errors. 

INTRODUCTION 

Alpha magnets refer to a general class of achromatic 

bending magnets [1].  They are so-named because a 

particle beam traversing a properly aligned alpha magnet 

follows a trajectory reminiscent of the Greek letter  as 

shown in Figure 1.  While alpha magnets in general can 

have a field dependence Bz ~ G xn, n≥1, quadrupolar 

alpha magnets (n=1) are the most practical to construct.  

Unless explicitly stated otherwise, the rest of this paper 

refers only to quadrupolar alpha magnets. 

Figure 1 illustrates the achromatic nature of the alpha 

magnet: over a ±20% energy spread, electrons injected at 

the proper angle exit at the same point and angle; the 

trajectories are self-similar but have different overall 

length, facilitating the alpha magnet’s use as a bunch 

compressor or stretcher, depending upon the chirp of the 

incoming beam. All particles cross the midplane, or x=0, 

line three times:  at injection, at their maximum depth y 

within the alpha magnet, and at exit. 

Using Borland’s notation [8], the included half-angle of 

the alpha magnet  is 40.71°.  The general scaling factor 

for particle trajectories in an alpha magnet is 

 

ଶߙ ൌ ͷ.ͺ͸͹ ∙ ͳͲିସcmିଶ ௚ሾୋ/ୡ୫ሿఉఊ   ,                  (1) 

 

where g is the magnetic field gradient in Gauss cm-1,  is 

the particle’s Lorentz factor,  is the particle’s normalized 

velocity, and the product  is the normalized momentum.  

The total path length of the particle’s trajectory is 

ఈݏ  ൌ ஃఈഀ ൌ ͳͻͳ.͸ͷͷ	cm ∙ ට ஒஓ୥ሾୋ/ୡ୫ሿ ,              (2) 

 

the maximum depth the particle reaches is 

 Δy ൌ ୼ொభఈ ൌ ͹ͷ.Ͳͷͳ͵	cm ∙ ට ஒஓ୥ሾୋ/ୡ୫ሿ ,             (3) 

 

and the trajectory width is 

 Δx ൌ ୼ொమఈ ൌ Ͷͻ.ʹͳʹ	cm ∙ ට ஒஓ୥ሾୋ/ୡ୫ሿ .               (4) 

 =4.642, Q1 = 1.818 and Q2 = 1.192 are the 

normalized path length, path depth and path width, 

respectively, and along with  are invariants for 

quadrupole-type alpha magnets. 

 

         

Figure 1:  Three electron beam trajectories in an ideal 

quadrupolar alpha magnet:  2 MeV (green), 2.4 MeV 

(blue) and 1.6 MeV (red), all injected at the ideal injection 

angle along the line indicated by the black arrow.  

Background shading indicates relative magnetic field 

strength.  The magnetic field gradient is 2.32 T/m. 

The trajectory is self-similar for all choices of gradient 

and momentum, providing broadband achromaticity.  For 

a fixed magnetic field gradient g and small variations of 

normalized momentum  around a central value, the path 
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length varies approximately linearly with momentum, 

thus allowing the alpha magnet to be used as a chirper or 

stretcher;  R56 = s/2 = /2. 

ALPHA MAGNET APPROXIMATION 

Several approaches suggest themselves as means of 

implementing alpha magnets in accelerator tracking codes 

that do not natively support them, without needing to 

modify the source code.* For instance, one could export 

the beam distribution immediately before the alpha 

magnet, transform it by the transport matrix described in 

[8] via Matlab or another general-purpose numerical 

code, reimport it and continue with the simulation.  

However, this is awkward, generally non-portable and 

does not provide for including space-charge effects within 

the alpha magnet.  One could also attempt to define an 

appropriate field map, but as the alpha magnet effectively 

redefines the z-axis for the beam, depending on the code 

this would also require exporting, processing and 

reimporting the beam distribution.  Rather, one would 

prefer a method implementable completely within a single 

simulation code, and relatively easily translated from 

code to code. 

An alpha magnet’s magnetic field can be approximated 

by a series of N+1 dipoles with edges parallel to the x- (or 

the normalized-coordinate Q2) axis, as illustrated in 

Figure 2.  Since most beam dynamics code make at least 

some provision for modelling the effects of dipoles, this is 

our preferred method for emulating alpha magnets. 

  

Figure 2:  division of the alpha magnet into multiple 

dipole “slices (left), and a close-up of some important 

parameters for a given slice (right). 

Our approach, in essence, breaks the alpha magnet up 

into N slices plus an (N+1)th “runout” or “turn-around” 

region encompassing the maximum, or midplane, depth 

reached by all particles in the beam.   

To an extent, the number of slices, and thus slice width, 

is an arbitrary parameter. In a physical alpha magnet, 

particles entering with different energies will have 

differing maximum depths as they cross the midplane.  In 

most beam dynamics codes, if a dipole is present in the 

beamline, every particle in the beam is constrained to 

enter it.  Therefore, when approximating an alpha magnet 

with dipoles, the “deepest” slice must be arranged to 

                                                           
*
 One of GPT’s unique features is the ability to add user-defined 

elements without risking corruption of its core algorithms (particle 

stepping, space-charge, etc.).  Directly implementing an alpha magnet 

with GPT is thus relatively straightforward. 

ensure that the lowest-energy particle in the beam would 

in fact reach it.   

For each slice, and the (N+1)th “runout” region, the 

dipole parameters required by the specific beam-

dynamics code (e.g. entrance / exit angles, magnetic field, 

bend radius, net bending angle, path length) are calculated 

via numerical integration of the normalized equations of 

motion through an ideal alpha magnet.   

Once this exercise has been completed, so long as the 

number of slices does not change and certain other 

constraints are met, the edge angles remain constant and 

all other quantities scale with the  parameter, allowing 

for easy reuse of the model.  Also, from symmetry, we 

need only calculate these parameters for one-half of the 

alpha magnet trajectory. 

METHODOLOGY 

Trajectory Calculation and Parameterization 

A standalone numerical code, for instance MathCAD 

(used for this work), Matlab or Mathematica, is used to 

calculate the ideal trajectory of a particle from injection to 

the alpha magnet midplane using normalized coordinates 

as described in [8], allowing parameterization of the 

normalized transverse position (Q2) and path length (L) as 

a function of normalized depth into the alpha magnet 

(Q1).  In turn, these permit us to define the angle  of the 

particle’s momentum vector with respect to the Q1 (y) 

axis, as a function of depth.  Figure 3 shows Q2(Q1), 

L(Q1) and (Q1) for the ideal trajectory from entrance 

point to maximum depth.  Note that the horizontal axes on 

these plots corresponds to the vertical axis in Figure 2. 

(a) 

(b) (c) 

Figure 3:  Normalized alpha magnet trajectory (a) 

transverse coordinate Q2 vs. depth Q1; (b) angle to the 

Q1 axis vs. Q1; (c) path length as a function of Q1. 

Dipole Slice Parameters 

The magnetic field gradient g, the central momentum o, and the maximum depth y of the central trajectory 

within the alpha magnet are related by Equation 2; two 
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out of three of these parameters must be specified to 

compute the dipole slice parameters. The ratio of the 

minimum to the central momentum, min/o, is also 

required.  Then the width of the slices in normalized 

coordinates along the Q1 axis, is given by  

௦௟௜௖௘ݓ  ൌ ୼ொభே ∙ ටη ஒஓౣ౟౤ஒஓ౥  ,          (5) 

  

where  is a safety factor to allow for some variation in 

the injected beam momentum spread due to, for instance, 

optimization of upstream components. 

Using N=8 slices, min/o=0.95, and =0.9, wslice = 

0.21; the distance along the Q1 axis between the start of 

the runout region and the depth of the central trajectory is Δܳଵ െ ௦௟௜௖௘ݓܰ ൌ Ͳ.ͳ͵ͺ.  The slice width is therefore on 

the same order as the width of the runout region 

(assuming a symmetric momentum distribution), a 

condition we have empirically found works well.   

Parameterization of the curves in Figure 3 yields the 

entrance and exit angles for each dipole slice (following 

the TRANSPORT [9] sign convention), and the 

normalized path length through each slice.  These are 

presented in Table 1.  Note that the “runout” slice is 

adjusted to transport the beam to the midplane of the 

alpha magnet. 

Table 1: Slice Entry/Exit Angles and Path Lengths 

Slice 

From 

Q1= 

To 

 Q1= 

1 

[deg] 

2 

[deg] 
1 0 0.210 40.71 -39.06 0.2749 

2 0.210 0.420 39.06 -34.33 0.2630 

3 0.420 0.630 34.33 -26.79 0.2450 

4 0.630 0.840 26.79 -17.40 0.2275 

5 0.840 1.051 17.40 -5.76 0.215 

6 1.051 1.261 5.76 8.19 0.2107 

7 1.261 1.471 -8.19 25.43 0.2201 

8 1.471 1.681 -25.43 49.5 0.2657 

runout 1.681 - -49.5 0 0.3991 

 

For an N-slice alpha magnet model, either 2N+1 or 

2(N+1) dipoles must be defined, depending on whether 

one wishes to access the beam distribution at the 

midplane of the alpha magnet.  Assuming the latter case, 

and using the nomenclature shown in Figure 4 as a 

reference, the following relationships exist between 

dipoles prior to and following the midplane:  Dipoles on the same slice have the same magnetic 

field, bending radius and path length:             

Bn,e=Bn,i, n,e=n,i and Ln,e=Ln,i for n=1..N and runout.  The dipole entrance and exit edge angles are related 

as:  1,n+1,(i,e) = -2,n,(i,e) for n=1..N and runout; 2,R,i=1,R,e=0; and (2,1),n,e=(1,2),n,i for n=1..N. 

 

The magnetic field Bn for each slice is given by 

 

Nn
w

gnB slice
n 


  ,

2

1

                    (6) 

 

Following the Nth slice, the field in the runout section is 

taken to be  

ோܤ  ൌ ୼ொభఈ ݃ ,                         (7) 

 

the nominal field at the central momentum trajectory 

midpoint.  The physical path length  and bending radius 

within each dipole slice is given by  

௡ܮ  ൌ ఈ   and ,                                   (8) 

 

and the bending radius of the central trajectory is 

௡ߩ  ൌ ఉఊ೚௠೐௖௤೐஻೙                                 (9) 

 

for all slices as well as the runout region.  

The bend angle per slice can be set via two ways: 

ி஺,௡ߠ  ൌ ௅೙ఘ೙	,                               (10a) 

 

bases the bend angle per slice on the slice magnetic field 

and path length through the slice (the “field average” 

method), while  

ாெ,௡ߠ  ൌ ଵ,௡ߚ ൅ ,ଶ,௡ߚ ݊ ൑ ாெ,ோ,௜ߠܰ ൌ ଵ,௡ߚ ൅ ͻͲ°ߠாெ,ோ,௘ ൌ ଶ,ோߚ ൅ ͻͲ°     (10b) 

 

bases the bend angle per slice on the edge angles, using 

the relationship that, for a rectangular bend magnet, the 

bend angle equals the sum of the edge angles.  (The 

runout dipoles are special cases because their entrance 

and exit planes are perpendicular, not parallel.) 

Figure 4:  Dipole reference nomenclature; the beam 

passes through dipoles (n,i) before crossing the 

midplane, and dipoles (n,e) after passing the midplane. 
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ELEGANT TESTING 

We use the beam dynamics code elegant to check the 

model: it has a built-in model for alpha magnets for 

reference; it has several dipole models and fine control 

over how they are implemented; and it can generate an R-

matrix directly for a defined beamline. 

For our test, we use a pencil electron beam with o=4.811 (2 MeV kinetic) and a ±5% hard-edge 

momentum spread, and a magnetic field gradient 

g = 1 T/m, so =11.04 m-1
. The other parameters are 

chosen to be consistent with the values given in Table 1, 

e.g. N=8 and =0.9. Global default tracking was set to 2nd 

order, and both canonical sector bends (csbend element) 

and numerically integrated dipoles (nibend elements) 

were used to test the method. 

Equations 11-13 show, respectively, the 1st-order 

transport matrices for elegant’s alpha magnet model (R), 
and csbend dipoles using edge-angle (REM) and field-

average methods (RFA) for calculating slice bend angles.  

Figure 5 and 6 plot x and x’ vs  at the exit of the alpha 

magnet for the test cases using csbend and nibend dipole 

models, respectively. 

 

ܴఈ ൌ ۈۈۉ
െͳۇ െͲ.ʹͳ Ͳ Ͳ Ͳ ͲͲ െͳ Ͳ Ͳ Ͳ ͲͲ Ͳ െͲ.͹Ͷ Ͳ.͸ͻ Ͳ ͲͲ Ͳ െͲ.͸͸ െͲ.͹Ͷ Ͳ ͲͲ Ͳ Ͳ Ͳ ͳ Ͳ.ʹͳͲ Ͳ Ͳ Ͳ Ͳ ͳ ۋۋی

ۊ
  (11) 

 

ܴாெ ൌ ۈۈۉ
െͳۇ െͲ.ʹ Ͳ Ͳ Ͳ ͲͲ െͳ Ͳ Ͳ Ͳ Ͳ.ͲʹͲ Ͳ െͲ.ͺʹ Ͳ.Ͷͻ Ͳ ͲͲ Ͳ െͲ.͸͸ െͲ.ͺʹ Ͳ ͲͲ Ͳ.Ͳʹ Ͳ Ͳ ͳ Ͳ.ʹͷͲ Ͳ Ͳ Ͳ Ͳ ͳ ۋۋی

ۊ
  (12) 

 

ܴி஺ ൌ ۈۈۉ
െͲ.ͺͺۇ െͲ.ͳͻ Ͳ Ͳ Ͳ Ͳ.Ͳͳͳ.ʹʹ െͲ.ͺͺ Ͳ Ͳ Ͳ െͲ.ͲͳͲ Ͳ െͲ.ͺͲ Ͳ.ͷ͵ Ͳ ͲͲ Ͳ െͲ.͸͹ െͲ.ͺͲ Ͳ ͲെͲ.Ͳͳ Ͳ.ͳ Ͳ Ͳ ͳ Ͳ.ʹͶͲ Ͳ Ͳ Ͳ Ͳ ͳ ۋۋی

ۊ
 (13) 

 

 

Figure 5:  p-x space at the exit of the alpha magnet, for 

the built-in model (black), edge-angle method (red) and 

field-average method (blue) using elegant’s canonical 

sector bend (left) and numerically integrated bend 

(right) models. 

CONCLUSIONS 

A series of dipoles can be used to model the behavior 

of an alpha magnet in codes that do not natively include 

such elements. The “edge-angle” method for calculating 

dipole slice bend angle arguably provides somewhat more 

accurate first-order transport in the transverse planes, but 

the “field-average” method provides lower anomalous p-x 

coupling.  Higher-order terms are more strongly 

dependent upon the details of the dipole model used. 

Figure 6:  as in Figure 5, but plotting x’ vs p. 

This approach to approximating an alpha magnet was 

tested only using elegant.  While the approach in general 

appears to be valid, the specifics of the dipole model a 

given beam dynamics code uses may have a significant 

impact upon the transverse dynamics, and in particular p-

x and p-x’ coupling.  For instance, elegant’s numerically 

integrated dipole model, NIbend, produces notably 

different p-x’ coupling than the canonical sector bend 

dipole model.  Therefore, when using this approach with 

any beam dynamics code, we suggest at minimum 

determining the 1st-order transport matrix elements for 

comparison with elegant’s predictions for an equivalent 

momentum and trajectory depth.  
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