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Abstract
The presence of longitudinal asymmetry, sometimes in the

form of a one-sided tail, in the current profile emerging from

low-energy photoinjectors can strongly impact the beam

quality downstream of the compression region of an FEL

beam delivery system. To understand the origin of this fea-

ture, an approximate model for the evolution of higher-order

longitudinal beam moments is developed in the presence of

nonlinear kinematic effects and longitudinal space-charge.

This model is applied to investigate the evolution of beam

skewness in injector systems with parameters similar to the

APEX Injector under investigation at Lawrence Berkeley

National Laboratory.

INTRODUCTION
Careful control of the longitudinal phase space distribu-

tion of each electron bunch exiting an FEL beam delivery

system is critical to optimizing the FEL radiation brightness

and coherence. Previous studies have shown that, in some

cases, an asymmetric tail may appear in the beam current

profile out of the injector [1], limiting the portion of charge

that contributes to the lasing process. To understand this

feature, we attempted to develop a simple model of the lon-

gitudinal pulse shape evolution in low-energy photoinjectors

using a moment description.

The utility of the second-order rms beam envelope equa-

tions [2] has led to the study of systems of such equations for

higher-order beam moments [3,4]. Our approach is based on

the Hamiltonian formulation of the Vlasov-Poisson equation

as described in [5], which provides a systematic framework

for constructing moment equations through a given order [6].

The resulting system of equations describes the longitudinal

beam moments through fourth order, using a 1D wakefield

model of the longitudinal space-charge interaction.

This model was applied to an LCLS-II type injector sys-

tem based on the design of the Advanced Photoinjector Ex-

periment (APEX) at Lawrence Berkeley National Labora-

tory [7], whose layout is shown in Fig. 1. After photoemis-

sion from a 186 MHz RF gun, each bunch passes through a

1.3 GHz buncher cavity operated near 90◦ off-crest, which

introduces an energy-bunch length correlation. The bunch

then undergoes ballistic compression in a drift before enter-

ing the first of several 9-cell 1.3 GHz TESLA accelerating

cavities.

In the following section, we characterize the longitudinal

pulse shape in the injector using a moment description. In

∗ Work supported by the U.S. Department of Energy under Contract No.

DE-AC02-05CH11231.
† ChadMitchell@lbl.gov

the remainder of the paper, this characterization is used to

investigate the origin and evolution of longitudinal beam

asymmetry in the presence of ballistic compression.
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Figure 1: The low-energy portion of the photoinjector for

an FEL beam delivery system based on the APEX design.

PULSE SHAPE CHARACTERIZATION
It is useful to characterize the shape of the electron bunch

current profile in terms of the sequence of standardized

moments:

μn =

〈(
z − 〈z〉
σz

)n〉
, n = 0,1,2, . . . , (1)

where z denotes the longitudinal coordinate within the bunch

and σz the rms bunch length. The quantities μ3 and μ4

define the beam skewness and kurtosis, respectively, which

must satisfy the inequality [8]:

μ4 ≥ μ2
3 + 1. (2)

The skewness is a measure of bunch asymmetry: for a bunch

with a unimodal density profile, a value μ3 > 0 denotes that

a low-density tail appears for z > 〈z〉, while μ3 < 0 denotes

that a low-density tail appears for z < 〈z〉. The kurtosis

is often described as a measure of “peakedness", and for a

Gaussian profile takes the value μ4 = 3. Note that many

authors use the excess kurtosis, defined by μ4 − 3.

An approximation to the shape of the beam current pro-

file can be obtained by matching the centroid location, rms

bunch length, and the moments (μ3, μ4) to a corresponding

probability distribution from the Pearson family [9]- [12].

Figure 2 illustrates the current profile of a 300 pC, 99 MeV

electron bunch at the exit of a proposed LCLS-II injector

system based on the APEX design (Fig. 1), together with

a Pearson distribution of matching skewness and kurtosis.

Note the asymmetry of the current profile, with a slight tail

appearing for z < 0.

Figure 3 illustrates the evolution of the skewness and

kurtosis of this bunch during the first 3.5 m of the injector

system of Fig. 1 as simulated using IMPACT-T [13]. The

beam is nearly symmetric at the exit of the buncher, with
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Figure 2: The simulated current profile of a 300 pC, 99 MeV

bunch at the exit of a proposed LCLS-II injector (solid) is

shown together with a Pearson Type I distribution (dashed)

with matched (μ3, μ4) = (−0.521,3.132).

μ3 = 0.06, and the values (μ3, μ4) change significantly

in the drift region between the buncher exit (1 m) and the

pre-booster entrance (2.2 m). These values remain nearly

unchanged from 10 cm beyond the pre-booster entrance

through the remainder of the acceleration system. As a

result, the final pulse shape appears to be set primarily by

the dynamics in the ballistic compression region, which will

be the focus of this paper.
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Figure 3: The skewness μ3, kurtosis μ4, and bunch length

σz are shown as a function of bunch centroid distance from

the cathode for the layout shown in Fig. 1.

NONLINEAR BALLISTIC COMPRESSION
The Hamiltonian describing longitudinal single-particle

motion within a drifting beam relative to a nominal reference

particle can be written in terms of the canonical variables

z = −cΔt, δ = Δγ/γ in the form:

H1(z, δ) = −
√

(1 + δ)2 − 1/γ2 + (1 + δ)/β, (3)

where

γ = 1/

√
1 − β2 (4)

denotes the nominal relativistic gamma factor, the drift dis-

tance s is taken as the independent variable, and Δt, Δγ
denote deviations from the nominal trajectory.

The Taylor map associated with (3) is given through terms

of degree 3 by:

z = zi + R56δi + T566δ
2
i +U5666δ

3
i , δ = δi (5)

where

R56(s) =
sγ

(γ2 − 1)3/2
, T566(s) = −3

2

sγ3

(γ2 − 1)5/2
,

U5666(s) =
1

2

s(4γ2 + 1)γ3

(γ2 − 1)7/2
.

Consider a beam with a linear relative energy chirp h =
dδ/dz < 0 and small uncorrelated energy spread σδ <<
|hσz | entering a drift region. Using (5), one can obtain the

evolution of the standardized moments (1) as functions of the

initial moments μn, i and the two dimensionless parameters:

α = h2T566σz, iC, β = h3U5666σ
2
z, iC, (6)

where C = 1/(1+ hR56) is the linear compression factor. In

the typical case when | β | << |α | << 1, so that nonlinear

effects are moderately weak, we find that:

μ3 = μ3, i + 3α(μ4, i − μ2
3, i − 1) +O(α2). (7)

It follows from (7) and (2) that an initially symmetric beam

(with μ3, i = 0) is driven toward values of increasingly nega-

tive skewness through the nonlinear effect of nonzero T566.

Eliminating h in favor of the compression factor C gives

an approximate expression for the final beam skewness exit-

ing a ballistic compression region of length L in the absence

of space-charge:

μ3 = μ3, i +
9

2

(C − 1)2

C

(σz, i

L

)
(1+ μ2

3, i − μ4, i )γ(γ2−1)1/2.

(8)

The development of beam asymmetry in a drift is a rela-

tivistic effect that grows with increasing beam energy, as

apparent in (8).

A MOMENT MODEL OF LONGITUDINAL
SPACE-CHARGE

The 2D relativistic Vlasov equation for a drifting beam

takes the form:

∂ f
∂s
+
∂H1

∂δ

∂ f
∂z
+

qEz

mc2γ

∂ f
∂δ
= 0, (9)

where Ez is the longitudinal space-charge electric field and

H1 is given in (3). Following the formalism of [14]- [15], (9)

possesses the Lie-Poisson structure of a continuous Hamil-

tonian system with the collective Hamiltonian given by:

Hcoll =

∫
H1(ζ ) f (ζ )dζ +

1

2

q
mc2γ

∫
φ(z) f (ζ )dζ, (10)

where ζ = (z, δ) and the potential φ satisfies:

Ez (z) = −∂φ
∂z
. (11)
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We use a simple model of the longitudinal space-charge

wakefield, given in terms of the line-charge density ρ by

[16, 17]:

Ez (z) = − g

4πε0γ2
ρ′(z), φ(z) =

g

4πε0γ2
ρ(z), (12)

where g is a geometrical factor that depends on the boundary

conditions. Writing

ρ(z) = qNbλ(z), λ(z) =
∫

f (z, δ)dδ, (13)

where Nb is the number of particles in the bunch and λ is a

probability density describing the longitudinal profile of the

beam, the second term in (10) then takes the form:

Hint =
g

2

Nbrc
γ3

∫
λ(z)2dz, (14)

where rc is the classical electron radius.

Given any basis of polynomials {Pα : α = 1,2, . . . ,n}
of degree 1-N in the phase-space variables ζ = (z, δ), we

define a set of moments associated with the distribution

function f by:

mα =

∫
Pα (ζ ) f (ζ )dζ (α = 1,2, . . . ,n). (15)

If Hcoll can be expressed as a function of the moments mα ,

then the system of equations for the moments through order

N takes the form [6]:

dmα

ds
=

n∑
β=1

∂Hcoll

∂mβ

〈{Pα ,Pβ }〉, (16)

where {, } denotes the usual Poisson bracket.

Working through order N = 4, there are 14 such equations.

The single-particle term in (10) is expressed as a function

of the moments mα by expanding H1 as a Taylor series of

degree 4. The interaction term Hint is expressed as a function

of the moments by evaluating (14) when λ is taken to be the

unique Pearson distribution that has the specified moments

through fourth order [11]. This allows (14) to be written in

the form:

Hint =
g

2

Nbrc
γ3σz

H̃int (μ3, μ4), (17)

where H̃int is a function of the beam skewness and kurtosis

only. Figure 4 shows the contours of H̃int, indicating a global

minimum at (μ3, μ4) = (0,2.14286), which corresponds to

a parabolic current profile.

As is typical of the hierarchy of moment equations [3],

the system (16) couples the desired set of moments (through

order 4) to moments of higher order (through order 6). We

close the system by substituting analytical expressions for

the 5-6th order moments that are obtained in the absence

of space-charge using the single-particle map (5). This pro-

cedure is expected to introduce significant error when the

effects of space-charge are sufficiently large.
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Figure 4: Contours of the space-charge interaction Hamilto-

nian (17) in the Pearson plane, showing the locations corre-

sponding to Gaussian (G), parabolic (P), and uniform (U) cur-

rent profiles. The quantity H̃int is minimum for a parabolic

profile and diverges along the solid black curve. The figure

is symmetric about the line μ3 = 0.

APPLICATION
The moment model of the previous section was used to-

gether with the code IMPACT-Z to investigate the evolution

of beam skewness and kurtosis in the ballistic compression

region of an APEX-type photoinjector (Fig. 1). For each sim-

ulation, a bunch with an initially symmetric current profile

and a linear energy chirp (at the buncher exit) was modeled

during its 1.2 m drift between the buncher and the entrance

of the first accelerating cavity. In order to study the beam

longitudinal dynamics using IMPACT’s 3D Poisson solver,

only the longitudinal component of the space-charge electric

field is included. In each case, the initial rms bunch length

is fixed at 4.36 mm and the initial energy chirp of the beam

is adjusted to produce a compression factor of 3.

Figure 5 shows the trajectory of a bunch in the plane

(μ3, μ4) at a kinetic energy of 821 keV for several values

of bunch charge. The initial longitudinal current profile is

Gaussian, corresponding to (μ3, μ4) = (0,3). In the absence

of space-charge, the magnitude of both the skewness and

kurtosis increase along the drift, with the final skewness

given correctly by (8). The effect of space-charge appears to

be to drive the skewness and kurtosis values toward those of a

parabolic profile, consistent with minimizing the interaction

energy shown in Fig. 4.

Figure 6 shows the beam skewness at the exit of the drift

as a function of the beam kinetic energy for a fixed bunch

charge of 300 pC. Results are shown for a bunch with an

initially Gaussian longitudinal profile and for an initially

parabolic longitudinal profile. As is predicted in the absence

of space-charge (8), the skewness increases with the beam

energy. Note that the final skewness depends significantly

on the details of the initial longitudinal profile of the beam.
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Figure 5: Beam skewness and kurtosis evolution predicted

by the moment model (16) (upper) and by IMPACT-Z (lower)

for an initially Gaussian 821 keV beam undergoing ballistic

compression by a factor of 3 over a 1.2 m drift.

parabolic current 

profile 

gaussian current 

profile 

Figure 6: Final beam skewness as a function of beam en-

ergy at the exit of 1.2 m drift. Curves are results from the

moment model (16), while points are taken from IMPACT-Z

simulation.

CONCLUSIONS
A fourth-order moment model was developed for model-

ing longitudinal beam dynamics in the ballistic compression

region of an FEL photoinjector, using a simple model of

the longitudinal space-charge wakefield (12). The model

predicts scaling of the final beam skewness with the bunch

charge and beam energy that is consistent with simulation in

IMPACT-Z in the presence of 1D space-charge. The trans-

verse dynamics of the beam are not considered here. In

particular, the transverse beam size appears only through the

factor g governing the strength of the space-charge wakefield,

which is held fixed for these studies.

It is expected that a more accurate model could be ob-

tained by replacing the wakefield (12) by the wakefield

obtained from an appropriate longitudinal space-charge

impedance [18]. Alternative schemes for closing the set

of moment equations are also under consideration.
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