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Abstract 
The state of the art of FELs development at present is 

"Table-Top X Ray Free Electron Lasers". Many such 
schemes involves a pre-bunched electron beam [1]. In this 
paper we will analyze the evolution and "survivability" of 
bunching introduced into the beam in the free drift region 
prior to the wiggler [2-6]. We examined analytically the 
first order degradation in beam bunching due to space 
charge effect. It will be shown that there is a limited 
interaction region, characterized by an exponential decay 
of the bunching factor, having a length inversely 
proportional to the square of the electron beam 
normalized temperature, followed by a stable bunch 
region. We will present examples of the effect for several 
schemes of X Ray and Tera Hertz FELs considered or 
being constructed presently. 

INTRODUCTION 
First, we present a solution for the evolution of a cold 

bunched continuous electron beam in a free drift region, 
based on a one-dimensional first order Vlasov equations 
including space charge effects [3-5]. Based on the first 
order cold beam solution, we expand the analysis for the 
evolution of a warm bunched electron beam in a free drift 
region, by assuming normal distributions for both 
transversal and longitudinal components of the 
momentum, independently [2,6]. Analytical solution is 
achieved by using a second order two-dimensional Taylor 
expansion of the exponent argument in the previously 
derived cold beam solution. 

EVOLUTION OF A COLD BUNCHED 
ELECTRON BEAM IN A FREE DRIFT 

REGION 
The analysis for cold electron beam is based on 

relativistic Vlasov equation for plasma: 

 
ࢌࣔ

࢚ࣔ
൅࢜ሬሬԦ∙ સࢌ ൅

ሬሬԦ࢖ࢊ

࢚ࢊ
∙ ࢌ࢖ࢺ ൌ ૙ (1) 

where ࢌሺ࢘ሬԦ, ,ሬሬԦ࢖  ,ሻ is the distribution function of the plasma࢚
 ,ሬሬԦ are the momentum and velocity vectors࢜ ሬሬԦ and࢖
respectively.   
The time derivative of the momentum can be replaced by 
Lorentz force in the absence of an external magnetic field: 

 
ሬሬԦ࢖ࢊ

࢚ࢊ
ൌ െࡱࢋሬሬԦ (2) 

where e is the absolute value of the electron charge, and ࡱሬሬԦ 
is the electric field vector. In the current model there is no 
external electric field and no radiation field (since there is 
no external acceleration/deceleration, this is a good 
assumption). Therefore only the self-induced Coulomb 

field is considered (space charge). Thus the electric field 
can be derived out of the electric scalar potential: 

ሬሬԦࡱ  ൌ െસ(3) ࣒ 

where ψ is the electric scalar potential. 
Substituting (2) and (3) into (1) results in: 

 
ࢌࣔ

࢚ࣔ
൅࢜ሬሬԦ∙ સࢌ ൅ ࣒સࢋ ∙ ࢌ࢖ࢺ ൌ ૙ (4) 

where 

࢖ࢺ  ≜ ෝ࢞
ࣔ

࢞࢖ࣔ
൅ ෝ࢟

ࣔ

࢟࢖ࣔ
൅ ොࢠ

ࣔ

ࢠ࢖ࣔ
 (5) 

In this formulation we restrict ourselves to a single 
(longitudinal) dimension. Hence, equation (4) becomes: 

 
ࢌࣔ

࢚ࣔ
൅ ࢠ࢜

ࢌࣔ

ࢠࣔ
൅ ࢋ

࣒ࣔ

ࢠࣔ

ࢌࣔ

ࢠ࢖ࣔ
ൌ ૙ (6) 

 are the longitudinal components of the ࢠ࢜ and ࢠ࢖
momentum and velocity, respectively.    
Space charge effects are derived from the Poisson 
equation: 

 સ૛࣒ ൌ െ
࣋

૙ࢿ
 (7) 

ρ is the charge density (per unit volume), and ࢿ૙ is the 
permittivity of free space. 
The charge density can be integrated out of the 
distribution function: 

,ࢠሺ࣋  ሻ࢚ ൌ െ׬ࢋ ,ࢠ࢖ሺࢌ ,ࢠ ሻ࢚ ࢠ࢖ࢊ
ஶ
ିஶ  (8) 

Substituting (8) into (7) results in: 

 
ࣔ૛࣒

૛ࢠࣔ
ൌ

ࢋ

૙ࢿ
׬ ,ࢠ࢖ሺࢌ ,ࢠ ሻ࢚ ࢠ࢖ࢊ
ஶ
ିஶ  (9) 

The charge density of the electron beam is modulated at 
the origin (ݖ ൌ 0), hence the distribution function at the 
origin can be expressed as: 

ࢠሺࢌ  ൌ ૙ሻ ൌ ૙ሺ૚࢔ ൅ ࢠ࢖ሺࢾሻ࢚࣓࢐ࢋࢻ െ   (10)	ሻࢠഥ࢖

where ࢔૙ is the electrons density per unit volume, ∝ is 
the modulation factor, ω is the angular frequency of the 
modulation, ࢾ is the Dirac delta function, and ࢖ഥࢠ is the 
average longitudinal momentum; since the electron beam 
is cold, the spread in longitudinal momentum is described 
by a Dirac delta function. 

Using perturbation theory, we assume that both the 
distribution function and the electrical scalar potential can 
be expressed as an infinite series of terms, each 
proportional to a higher power of the modulation factor, 
∝: 

ࢌ ൌ ∝૙൅ࢌ ૚ࢌ ൅∝૛ ૛ࢌ ൅ ⋯				,	 

࣒  ൌ∝ ૚࣒ ൅∝૛ ૛࣒ ൅⋯	 (11) 
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૙࣒ ൌ ૙, since in a free drift region there is no external 
electrical scalar potential applied to the electron beam. 

In this section we are interested only in terms that are 
proportional to the modulation factor itself, i.e. linear to 
∝. 
Assuming that the perturbation is propagating along the 
electron beam in the positive longitudinal direction with 
an angular frequency equals to that of the modulation, ω, 
and a propagation coefficient k, then the form of the first 
order terms in (11) can be expressed as: 

૚ࢌ  ൌ ૚࣒				,				ሻࢠ࢑ି࢚ሺ࣓࢐ࢋ૚࣓ࢌ ൌ  ሻ (12)ࢠ࢑ି࢚ሺ࣓࢐ࢋ૚࣓࣒

where ࢌ૚࣓ and ࣒૚࣓ are the frequency dependent 
amplitudes of the first order distribution function and the 
electrical scalar potential, respectively. 
Substituting (12) in (6) and neglecting any terms that are 
not first order in ∝ results in: 

૚࣓ࢌ  ൌ
૙࢔∙ࢋ⋅࢑
࢑∙ࢠ࢜ି࣓

૚࣓࣒
ࣔ

ࢠ࢖ࣔ
ሾࢾሺࢠ࢖ െ  ሻሿ (13)ࢠഥ࢖

Substituting (12), (13) in (9) and neglecting non-linear ∝-
dependent terms results:  

 ૚ ൅
૙࢔∙૛ࢋ
૙ࢿ∙࢑

׬
૚

࢑∙ࢠ࢜ି࣓

ஶ
ିஶ ∙

ࣔ

ࢠ࢖ࣔ
ሾࢾሺࢠ࢖ െ ࢠ࢖ࢊሻሿࢠഥ࢖ ൌ ૙ (14) 

In order to proceed from (14) we calculate the derivatives 
of the following expressions: 

ࢠ࢜ ൌ
ࢠ࢖
ࢽ∙࢓

⟹
ࢠ࢜ࢊ
ࢠ࢖ࢊ

ൌ
૚

૜ࢽ∙࢓
						,					  

ࢽ  ൌ ቀ૚ ൅
	ࢠ࢖ ૛

૛ࢉ૛࢓
ቁ
ି
૚
૛
⟹

ࢽࢊ

ࢠ࢖ࢊ
ൌ

ࢠ࢖
ࢽ૛ࢉ૛࢓

 (15) 

The integral in (14) is carried by parts and the result is:  

׬
૚

࢑∙ࢠ࢜ି࣓

ஶ
ିஶ ∙

ࣔ

ࢠ࢖ࣔ
ሾࢾሺࢠ࢖ െ ࢠ࢖ࢊሻሿࢠഥ࢖ ൌ  

 ൌ െ
࢑

෥૜ࢽ࢓
∙

૚

ሺ࣓ି࢜෥࢑∙ࢠሻ૛
  (16) 

where ࢽ෥ ≜ ࢠ࢖ሺࢽ ൌ ࢠ෥࢜ ሻ andࢠഥ࢖ ≜ ࢠ࢖ሺࢠ࢜ ൌ  .ሻࢠഥ࢖
Substitute (16) in (14) leads to the dispersion relation: 

࢑  ൌ
࣓േ෥࣓࢖
ࢠ෥࢜

 (17) 

where ࣓࢖ ≜ ቀ
૙࢔૛ࢋ
૜ࢽ૙ࢿ࢓

ቁ
૚
૛
 is the plasma frequency and       

෥࣓ ࢖ ≜ ࢠ࢖ሺ࢖࣓ ൌ  .ሻࢠഥ࢖
Therefore the first order distribution function for the cold 
electron beam is:  

ࢌ ൌ ࢔૙ ൜૚ ൅
ࢻ

૛
൤ࢋ

ି࢚ቀ࣓࢐
࣓శ࣓࢖
ࢠ࢜

ቁࢠ ൅ ࢋ
ି࢚ቀ࣓࢐

࣓ష࣓࢖
ࢠ࢜

ቁ൨ൠࢠ ⋅ 

 ⋅ ࢠ࢖ሺࢾ െ   ሻ (18)ࢠഥ࢖

The physical interpretation of (18) is that the 
modulation in the charge density of the electron beam 
propagates in two waves, having phase velocities higher 
and lower than the longitudinal velocity of the electron 
beam, with no degradation in amplitude along the 
longitudinal direction. Superimposed these two waves 
results in a standing wave, having a wave number of  

࢖࣓
ࢠ࢜

 

and acting as an "envelope" (amplitude modulation) of a 
propagating wave (carrier), having an angular frequency 
ω, and a propagation coefficient  

࣓

ࢠ࢜
 :  

ቈࢋ
ି࢚൬࣓࢐

࣓ା࣓࢖
ࢠ࢜

൰ࢠ
൅ ࢋ

ି࢚ቀ࣓࢐
࢖࣓ି࣓
ࢠ࢜

ቁࢠ
቉ ൎ 

 ൎ ࢋ
ି࢚ቀ࣓࢐

࣓
ࢠ࢜
ቁࢠ ∙ ࢙࢕ࢉ ቀ

࢖࣓
ࢠ࢜
ቁ (19) 

EVOLUTION OF A WARM PRE-
BUNCHED BEAM 

Calculation of Terms 
Based on the first order cold beam solution for the 

distribution function, we expand the analysis for the 
evolution of a warm bunched electron beam in a free drift 
region, by replacing the one-dimensional Dirac delta 
function in (18) with normal distributions for both 
transversal and longitudinal components of the 
momentum, independently: 

૚ࢌ ൌ
૚
૛
૙࢔ ∙ ቈࢋ

ି࢚൬࣓࢐
࣓ା࣓࢖
ࢠ࢜

൰ࢠ
൅ ࢋ

ି࢚ቀ࣓࢐
࢖࣓ି࣓
ࢠ࢜

ቁࢠ
቉ ⋅ 

∙ ൥
૚

√૛࢖∆∙఼࣊
ࢋ
ି

ሺ࢖఼ሻ
૛

૛∙ሺ∆࢖఼ሻ૛൩ ⋅ ቈ
૚

√૛ࢠ࢖∆∙࣊
ࢋ
ି
ሺࢠ࢖ష࢖ഥࢠሻ૛

૛∙ሺ∆ࢠ࢖ሻ૛ ቉ (20) 

where ୄ࢖ is the transversal component of the momentum, 
 are the standard deviations of the ࢠ࢖∆  and ୄ࢖∆
transversal and longitudinal normal distributions, 
respectively; the average transversal momentum 
component is zero:        ࢖ഥୄ ൌ ૙. 
In expression (20) only terms that are proportional to the 
modulation factor itself, i.e. linear to ∝, are considered. 
     The influence on the charge density along the electron 
beam, caused by the perturbation, is given by the two-
dimensional integration over the transversal and 
longitudinal components of the momentum: 

૚࣋  ൌ െ׬ࢋ ୄ࢖ࢊ ׬ ࢠ࢖ࢊ૚ࢌ
ஶ
ିஶ

ஶ
ିஶ  (21) 

 :૚ is the first order approximation of the charge density࣋
࣋ ൌ ∝૙൅࣋ ૚࣋ ൅∝૛ ૛࣋ ൅⋯ 

In order perform the integration in (21), we use a second 
order two dimensional Taylor expansion for the core of 
the cold beam solution, centered at the average values of 
the transversal and longitudinal components of the 
momentum; we define: 

,ୄ࢖േሺࢍ  ሻࢠ࢖ ≜
࣓േ࣓࢖
ࢠ࢜

 (22) 

The second order approximation of the function ࢍേ is 
given by: 

,ୄ࢖േሺࢍ ሻࢠ࢖ ൎ ,േሺ૙ࢍ ሻࢠഥ࢖ ൅   

൅ቈ
േࢍࢊ

఼࢖ࢊ
│

		
	

ሺ૙, ሻࢠഥ࢖
቉ ∙ ୄ࢖ ൅ ቈ

േࢍࢊ

ࢠ࢖ࢊ
│

		
	

ሺ૙, ሻࢠഥ࢖
቉ ∙ ሺࢠ࢖ െ ሻࢠഥ࢖ ൅  

൅	
૚

૛
 ቈ
േࢍ૛ࢊ

఼૛࢖ࢊ
│

		
	

ሺ૙, ሻࢠഥ࢖
቉ ∙ ૛ୄ࢖ ൅       
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൅ቈ
േࢍ૛ࢊ

	ࢠ࢖ࢊ఼࢖ࢊ
│

		
	

ሺ૙, ሻࢠഥ࢖
቉ ∙ ୄ࢖ ∙ ሺࢠ࢖ െ ሻࢠഥ࢖ ൅  

 ൅
૚

૛
ቈ
േࢍ૛ࢊ

૛ࢠ࢖ࢊ
│

		
	

ሺ૙, ሻࢠഥ࢖
቉ ∙ ሺࢠ࢖ െ  ሻ૛ (23)ࢠഥ࢖

Basic relations: 

ࢠ࢜ ൌ
ࢠ࢖
ࢽ∙࢓

				; ࢽ				 ൌ ቀ૚ ൅
૛ࢠ࢖఼૛ା࢖

૛ࢉ૛࢓
ቁ
૚
૛
				 ;			   

࢖࣓  ൌ ቀ
૙࢔૛ࢋ

૛ࢠࢽࢽ૙ࢿ࢓
ቁ
૚
૛
 (24)	

ࢽ				 ൌ ሺ૚ െ ૛ሻିࢼ
૚
૛		;		 ࢠࢽ	 ൌ ൫૚ െ ࢠࢼ

૛൯
ି
૚
૛		;	  

ࢠࢽ		  ൌ ࢽ ∙ ቀ૚ ൅
఼૛࢖

૛ࢉ૛࢓
ቁ
ି
૚
૛
 (25) 

First order derivatives: 
ࢽࢊ

఼࢖ࢊ
ൌ

఼࢖
ࢽ૛ࢉ૛࢓

			 ; 			
ࢽࢊ

ࢠ࢖ࢊ
ൌ

ࢠ࢖
ࢽ૛ࢉ૛࢓

			 ;	  

 
ࢠࢽࢊ
఼࢖ࢊ

ൌ െ
૜ࢠࢽ૛ࢠ࢖఼࢖

૝ࢽ૝ࢉ૝࢓
			 ; 			

ࢠࢽࢊ
ࢠ࢖ࢊ

ൌ
	ࢠࢽ	ࢠ࢖

૛ࢽ૛ࢉ૛࢓
 (26) 

  
ࢠ࢜ࢊ
఼࢖ࢊ

ൌ െ
	ࢠ࢖఼࢖

૜ࢽ૛ࢉ૛࢓
			 ; 			

ࢠ࢜ࢊ
ࢠ࢖ࢊ

ൌ
૚

૛ࢠࢽࢽ	࢓
			 ;			 

 
࢖࣓ࢊ
఼࢖ࢊ

ൌ
		఼࢖࢖࣓

૛ࢽ૛ࢉ૛࢓
ቀࢠࢽ૛ െ

૜

૛
ቁ		; 			

࢖࣓ࢊ
ࢠ࢖ࢊ

ൌ െ
૜

૛

		ࢠ࢖࢖࣓

૛ࢽ૛ࢉ૛࢓
 (27) 

േࢍࢊ

఼࢖ࢊ
ൌ

		఼࢖

	ࢠ࢖ࢽ૛ࢉ	࢓
ቂ࣓ േ ࢖࣓ ቀࢠࢽ૛ െ

૚

૛
ቁቃ			 ;			  

 
േࢍࢊ

ࢠ࢖ࢊ
ൌ െሺേሻ

૜

૛

		࢖࣓

	ࢽ૛ࢉ	࢓
െ

ࢽ࢓

૛ࢠࢽ૛ࢠ࢖
൫࣓ േ࣓࢖൯ (28) 

Second order derivatives: 
േࢍ૛ࢊ

఼૛࢖ࢊ
ൌ

૚		

	ࢠ࢖૛ࢉ	࢓
⋅

఼૛࢖

૛ࢽ૛ࢉ૛࢓
⋅ ቂേ࣓࢖ ቀ

૞

૝
െ ૛ࢠࢽ െ ૝ቁࢠࢽ െ ࣓ቃ ൅  

 ൅
૚		

	ࢠ࢖૛ࢉ	࢓
⋅ ቂ࣓ േ ࢖࣓ ቀࢠࢽ૛ െ

૚

૛
ቁቃ (29) 

േࢍ૛ࢊ

	ࢠ࢖ࢊ఼࢖ࢊ
ൌ

	఼࢖

૜ࢽ૝ࢉ૜࢓
ቂേ࣓࢖ ቀ

ૠ

૝
െ

૜

૛
૛ቁࢠࢽ െ ૛࣓ቃ  

 െ
	఼࢖

૛ࢠ࢖૛ࢠࢽࢽ૛ࢉ	࢓
ቂ࣓ േ ࢖࣓ ቀࢠࢽ૛ െ

૚

૛
ቁቃ (30) 

േࢍ૛ࢊ

૛ࢠ࢖ࢊ
ൌ േ

૚૞

૝

		ࢠ࢖࢖࣓

૜ࢽ૝ࢉ૜࢓
൅ ૛

ࢽ࢓

૛ࢠࢽ૜ࢠ࢖
൫࣓ േ࣓࢖൯ ൅  

 ൅
࣓േ

૞
૛
࢖࣓

	ࢠ࢖૛ࢠࢽࢽ૛ࢉ	࢓
 (31) 

Substituting the average values of the transversal and 
longitudinal components of the momentum in expressions 
(24)-(31) leads to the following definitions of constants: 

෥ࢽ ≜ ୄ࢖ሺࢽ ൌ ૙, ࢠ࢖ ൌ ሻࢠഥ࢖ ൌ ቀ૚ ൅
ࢠഥ࢖

૛

૛ࢉ૛࢓
ቁ

૚
૛
			 ;		  

ࢠ෥ࢽ  ≜ ୄ࢖ሺࢠࢽ ൌ ૙, ࢠ࢖ ൌ ሻࢠഥ࢖ ൌ  ෥ (32)ࢽ

෥࣓ ࢖ ≜ ୄ࢖ሺ࢖࣓ ൌ ૙, ࢠ࢖ ൌ ሻࢠഥ࢖ ൌ ቀ
૙࢔૛ࢋ
෥૜ࢽ૙ࢿ࢓

ቁ
૚
૛
			 ;				  

ࢠ෥࢜  ≜ ୄ࢖ሺࢠ࢜ ൌ ૙, ࢠ࢖ ൌ ሻࢠഥ࢖ ൌ
ࢠഥ࢖
෥ࢽ∙࢓

 (33) 

േ࡭  ≜ ,േሺ૙ࢍ ሻࢠഥ࢖ ൌ
࣓േ෥࣓࢖
ࢠ෥࢜

  (34) 

ቈ
േࢍࢊ

఼࢖ࢊ
│

		
	

ሺ૙, ሻࢠഥ࢖
቉ ൌ ૙			;				࡮േ ≜ ቈ

േࢍࢊ

ࢠ࢖ࢊ
│

		
	

ሺ૙, ሻࢠഥ࢖
቉ ൌ  

 ൌ െሺേሻ
૜

૛

෥࣓࢖
	෥ࢽ૛ࢉ	࢓

–
࢓

ࢠഥ࢖
૛ࢽ෥
ቀ࣓ േ ෥࣓࢖	ቁ  (35) 

૚࡯
േ ≜ ቈ

േࢍ૛ࢊ

఼૛࢖ࢊ
│

		
	

ሺ૙, ሻࢠഥ࢖
቉ ൌ

૚		

ࢠഥ࢖૛ࢉ	࢓
ቂ࣓ േ ෥࣓࢖ ቀࢽ෥	

૛ െ
૚

૛
ቁቃ  ; 

 ቈ
േࢍ૛ࢊ

	ࢠ࢖ࢊ఼࢖ࢊ
│

		
	

ሺ૙, ሻࢠഥ࢖
቉ ൌ ૙ (36) 

૛࡯
േ ≜ ቈ

േࢍ૛ࢊ

૛ࢠ࢖ࢊ
│

		
	

ሺ૙, ሻࢠഥ࢖
቉ ൌ  

 ൌ േ
૚૞

૝

෥࣓࢖࢖ഥࢠ		

෥૜ࢽ૝ࢉ૜࢓
൅ ૛

࢓

ࢠഥ࢖
૜ࢽ෥	

	 ቀ࣓ േ ෥࣓࢖	ቁ ൅
࣓േ

૞
૛
෥࣓࢖	

ࢠഥ࢖෥૜ࢽ૛ࢉ	࢓
	 (37) 

Using the above definitions of the constants, the second 
order approximation of ࢍേ as given in (23) becomes: 

,ୄ࢖േሺࢍ ሻࢠ࢖ ൎ േ࡭ ൅ േ࡮ ∙ ሺࢠ࢖ െ ሻࢠഥ࢖ ൅ 

 ൅
૚

૛
૚࡯ൣ

േ ∙ ૛ୄ࢖ ൅ ૛࡯
േ ∙ ሺࢠ࢖ െ  ሻ૛൧ (38)ࢠഥ࢖

With the definition: 

,ୄ࢖ሺࢎ ,ࢠ࢖ ሻࢠ ≜
఼૛࢖

૛∙∆࢖఼
૛ ൅

ሺ࢖ିࢠ࢖ഥࢠሻ૛

૛∙∆ࢠ࢖
૛ ൅  

 ൅ࢠ࢐ ∙ ,ୄ࢖േሺࢍ  ሻ  (39)ࢠ࢖

The integration in (21) can be written as: 
૚േ࣋ ൌ െ

૙࢔ࢋ
૝࢖∆∙఼࣊∙∆ࢠ࢖

࢚࣓࢐ࢋ ⋅  

 ⋅ ׬ ୄ࢖ࢊ ׬ ࢠ࢖ࢊሻࢠ,ࢠ࢖,఼࢖ሺࢎିࢋ
ஶ
ିஶ

ஶ
ିஶ   (40) 

Substituting (38) in (39) results in: 

,ୄ࢖ሺࢎ ,ࢠ࢖ ሻࢠ ൎ
఼૛࢖

૛∙∆࢖఼
૛ ൅

ሺ࢖ିࢠ࢖ഥࢠሻ૛

૛∙∆ࢠ࢖
૛ ൅  

൅࡭ࢠ࢐േ ൅ േ࡮ࢠ࢐ ∙ ሺࢠ࢖ െ ሻࢠഥ࢖ ൅  

 ൅
૚

૛
૚࡯ࢠ࢐ൣ

േ ∙ ૛ୄ࢖ ൅ ૛࡯ࢠ࢐
േ ∙ ሺࢠ࢖ െ  ሻ૛൧  (41)ࢠഥ࢖

We examine the coefficients of the terms ୄ࢖૛, ࢠ࢖૛ and 
 :we suggest the following definitions ;ࢠ࢖

ሻࢠሺୄ࣌ ≜
఼࢖∆

ට૚ା࡯ࢠ࢐૚
േ	∙∆࢖఼

૛
				 ;   

ሻࢠሺࢠ࣌ ≜
ࢠ࢖∆

ට૚ା࡯ࢠ࢐૛
േ	∙∆ࢠ࢖

૛
					;		   

ሻࢠഥሺ࢖  ≜ ࢠഥ࢖ െ േ࡮ࢠ࢐ ∙ ሾࢠ࣌ሺࢠሻሿ૛ (42) 

Substitute (42) in (41) results in: 

,ୄ࢖ሺࢎ ,ࢠ࢖ ሻࢠ ൎ
఼૛࢖

૛∙ሾ఼࣌ሺࢠሻሿ૛
൅

ሾ࢖ିࢠ࢖ഥሺࢠሻ	ሿ૛

૛∙ሾࢠ࣌ሺࢠሻሿ૛
൅  

 ൅࡭ࢠ࢐േ ൅
૚

૛
 ሻሿ૛ (43)ࢠሺࢠ࣌േሻ૛ሾ࡮૛ሺࢠ

The first order charge density can now be calculated in 
(40) by using the approximation for ࢎሺୄ࢖, ,ࢠ࢖  :ሻ in (43)ࢠ

૚േ࣋ ൌ െ
ሻࢠሺࢠ࣌∙ሻࢠ఼ሺ࣌∙૙࢔ࢋ

૛∙∆࢖఼∙∆ࢠ࢖
࡭ࢠ࢐ቄିࢋ࢚࣓࢐ࢋ

േା
૚
૛
േ൯࡮૛൫ࢠ

૛
ሾࢠ࣌ሺࢠሻሿ૛ቅ ൌ  
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=െ
૙࢔ࢋ

ටቀ૚ା࡯ࢠ࢐૚
േ	∙∆࢖఼

૛ቁቀ૚ା࡯ࢠ࢐૛
േ	∙∆ࢠ࢖

૛ቁ
⋅
૚

૛
⋅ ࢋ

ି࢚൬࣓࢐
࣓േ෥࣓࢖
ࢠ෥࢜

൰ࢠ
  

 ∙ ࢋ
ି
ቀ࡮േቁ

૛
ࢠ࢖∆

૛

૛
∙

૛ࢠ

૚శ࡯ࢠ࢐૛
േ	∙∆ࢠ࢖

૛
 (44) 

Physical Interpretation and Significance for 
Low Energy X-Ray FEL 

The factor  
૚

૛
ࢋ
ି࢚൬࣓࢐

࣓േ෥࣓࢖
ࢠ෥࢜

൰ࢠ
 is proportional to the cold 

beam solution. 
In order to evaluate the degradation in amplitude of the 

first order charge density along the longitudinal direction, 
we separate the other exponential expression in (44) into 
real and imaginary parts:  

ࢋ
ି
ቀ࡮േቁ

૛
ࢠ࢖∆

૛

૛
∙

૛ࢠ

૚శ࡯ࢠ࢐૛
േ	∙∆ࢠ࢖

૛ ൌ  

 ൌ ࢋ

࢐
૛࡯∙૜ࢠ

േ	∙ቀ࡮േቁ
૛
ࢠ࢖∆∙

૝

૛ቈ૚శࢠ૛∙ቀ࡯૛
േ	ቁ

૛
ࢠ࢖∆∙

૝቉
∙ ࢋ

ି
ቀ࡮േቁ

૛
ࢠ࢖∆∙

૛

૛
∙

૛ࢠ

૚శࢠ૛∙ቀ࡯૛
േ	ቁ

૛
ࢠ࢖∆∙

૝
 (45) 

The physical interpretation of the result in (45) is that 
there is a limited length region, at the vicinity of the 
modulation starting point, characterized by an exponential 
decay in the charge density modulation, described by the 

expression ିࢋ
ቀ࡮േቁ

૛
ࢠ࢖∆∙

૛

૛
          ૛ ,with typical length ofࢠ

ࢠ∆ ൎ
૚

ห࡯૛
േ	ห∙∆ࢠ࢖

૛ , followed by a stable modulation region. 

If the frequency of the modulation divided by the factor 
     .෤ଶ is significantly higher than the plasma frequency, i.eߛ
࣓

෥૛ࢽ
≫ ෥࣓࢖, the terms ሺ࡮േሻ૛ and ࡯૛

േ		are simplified: 

 ሺ࡮േሻ૛ ൎ
࣓૛

෥૟ࢽ૝ࢉ૛࢓
						 ; േ࡯								 ൎ

૜࣓

෥૝ࢽ૜ࢉ૛࢓
 (46) 

Note that  
࣓

ࢉ
ൌ

૛࣊

ࣅ
  and for ࢽ෥ ൐ ૚૙ the average 

longitudinal momentum is approximately:                  
ࢠഥ࢖ ൌ ࢠ෥࢜෥ࢽ࢓ ൎ  it is convenient to define the ;ࢉ෥ࢽ࢓
normalized temperature of the electron beam: 

࢔ࢀ  ≜
ࢠ࢖∆
ࢠഥ࢖

 (47) 

The expression describing the exponential decay in (45) 
becomes: 

࢖࢞ࢋ ቈെ
൫࡮േ൯

૛
ࢠ࢖∆∙

૛

૛
∙

૛ࢠ

૚ାࢠ૛∙൫࡯૛
േ	൯

૛
ࢠ࢖∆∙

૝
቉ ൎ   

 ൎ ࢖࢞ࢋ ൥െ
૛࣊૛

෥૝ࢽ
⋅ ࢔ࢀ

૛ ⋅
૛ࢠ

૛ࣅ
⋅

૚

૚ା
૜૟࣊૛

෥૝ࢽ
࢔ࢀ⋅

૝⋅
૛ࢠ

૛ࣅ

൩ (48) 

Therefore, the typical length of region characterized by 
the exponential decay, normalized with respect to the 
wavelength, is inversely proportional to the square of the 
normalized temperature:  

 
ࢠ∆

ࣅ
ൎ

෥૛ࢽ

૟࣊
∙

૚

࢔ࢀ
૛ (49) 

The attenuation in the amplitude of the first order charge 
density in the stable region, with respect to the initial 
modulation factor is: 

 ቚ
ሻࢠ∆≪ࢠ૚േሺ࣋

ୀ૙ሻࢠ૚േሺ࣋
ቚ ൎ ࢋ

ି
૚

૚ૡ⋅࢔ࢀ
૛ (50) 

Typical normalized length for the attenuation in the 
amplitude of the first order charge density (the point 

where the attenuation decreases down to about  
૚

ࢋ
  of its 

initial value) is no less than: 

 ቚ
ሻࢠ∆ୀࢠ૚േሺ࣋

ୀ૙ሻࢠ૚േሺ࣋
ቚ ൎ

૚

ࢋ
	⟹		

ࢠ∆

ࣅ
൐

෥૛ࢽ

√૛∙࣊
∙
૚

࢔ࢀ
 (51) 

The actual normalized length in (51) may increase for 
high values of the normalized temperature, due to the 
term in the denominator of (48), which becomes: 
૚ ൅ ૚ૡ࢔ࢀ

૛ at that point. 
     The table below depicts the estimate typical 
normalized lengths of the attenuation in the amplitude of 
the first order charge density, as calculated in (51). This 
was calculated for two different operating ranges, (Tera 
Hertz and X Ray) in various cases: 
 

λ ࢽ෥ ࢠ∆ ࢔ࢀ 
100μ݉ 10 0.1 22.5݉݉ 
10݊݉ 80 0.001 14.4݉݉ 
10݊݉ 400 0.01 36݉݉ 

CONCLUSIONS 
For a cold electron beam in a free drift region, a first 

order perturbation in charge density was calculated. The 
result is shown to be a propagation wave in the 
longitudinal direction at the excitation frequency. The 
phase velocity of the density wave equals to that of the 
beam velocity plus an amplitude modulation caused by a 
standing wave acting as a slow-varying "envelope". The 
standing wave has a wave number equals to the plasma 
frequency divided by the beam velocity, but with no 
attenuation in charge density modulation along the 
longitudinal direction. 
     Introducing two dimensional velocity spreads causes 
the first order charge density modulation of a warm 
electron beam in a free drift region to decrease rapidly 
(exponential decay) in the longitudinal direction. The 
decrease has a typical normalized length proportional to 
 ෥૛, and inversely proportional to the normalizedࢽ
temperature. 

In the Tera Hertz range, a typical normalized length (the 
effective length without losing the bunching) of the order 
of tens of millimeters can be achieved with ࢽ෥ ൎ ૚૙	and a 
normalized temperature of 0.1; the same order of 
magnitude of typical normalized length in the X Ray 
range can be achieved with ࢽ෥ ൎ ૡ૙ and a normalized 
temperature of 0.001, or ࢽ෥ ൎ ૝૙૙ and a normalized 
temperature of 0.01. 
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