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Abstract 
Spatially-periodic magnetic structures are widely used 

for generation of high-brilliance radiation in storage rings, 
sources of synchrotron radiation and free electron lasers. 
In 1947, V.L. Ginzburg suggested the first undulator 
scheme. 

An alternating magnetic field created by a planar 
undulator makes electrons oscillate in the transverse 
direction, with interference of radiation emitted from 
separate parts of the trajectory. The spectrum of the 
forward emitted radiation is enchanced due to 
constructive interference. 

The ondulator is made of the magnetized bars that are 
not perfect and their magnetization differs. Therefore, the 
electron trajectory is not purely sinusoidal and, as a result, 
the spectral intensity fades. The task was to find out if the 
precision of magnet manufacturing is sufficient. 

This paper presents modelling of electron motion in the 
measured magnetic field of the new (third) free electron 
laser at the Siberian Synchrotron Radiation Centre. We 
have managed to estimate the effect of the field errors 
through comparison of the resulting emitted field 
amplitude with the amplitude from ideal magnet bars 
using the hodograph method. 

CALCULATING MAGNETIC FIELD OF 
UNDULATOR 

The undulator under study consists of two rows of 
magnetized bricks with 1.5×1.5 cm2 square cross-section, 
a width w of 9 cm and alternating magnetization 
directions as shown in Fig. 1. A brick is characterized by 
homogeneous magnetization M and the brick shorter side 
b. The vertical component of the field of a break, centered 
at the origin is given by two expressions for contributions 
of vertical My and horizontal Mz components of of 
magnetizations. Now the undulator field can be calculated 
as the sum of the fields of all its bricks (Eq. 1): 

Figure 1: Scheme of permanent magnet undulator. 
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where g is the distance between the undulator axis and the 
brick centres, and My = Mz = M. It should be taken into 
account that the undulator begins and ends with two pairs 
of halved bricks for the average angle of particle 
trajectory and the transverse coordinate to be the same at 
the undulator ends. The fields of these termination bricks 
were calculated with formula, similar to Eqs. 2 and 3. The 
contribution of termination bricks is skipped in Eq. 1, but 
was taken into account in field and trajectory calculations. 
Bricks with vertical (along the OY axis) magnetization 
change the particle transverse angle, while bricks 
magnetized horizontally along the OZ axis change the 
transverse coordinate of particle. 

This results, for a magnetic field of ideal bricks, in an 
electron trajectory which is close to the ondulator axis and 
has close-to-zero transverse angle and coordinate (see 
Fig. 2).  

Since the average magnetization of brick M is not 
known precisely, let select it such that the ideal ondulator 
field is close to the measured undulator field, shown in 
Fig. 3. We obtained an average magnetization of 
1.076 kG using the method of standard deviations. The 
field errors, shown in Fig. 4, apparently do not exceed 
5 % of the field maximum. 

 

 
Figure 2: Electron trajectory in the field of the ideal 
undulator. 
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Figure 3: Measured undulator magnetic field. 

 

Figure 4: Difference in the fitted ideal and measured 
magnetic fields. 

RADIATION HODOGRAPH METHOD 
For a planar undulator the Fourier-harmonics of 

forward emitted radiation at frequency ω is proportional 
to [1]: 
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where c is the velocity of light. Eq. 4 shows that it is sum 
of contributions of all segments of the particle trajectory. 
In a good undulator at some frequency phases of 
contributions of different segments are the same, and the 
modulus of the radiation Fourier-harmonics is maximum. 

To visualize contributions of different parts of the 
undulator one can take the integral Eq. 4 from the 
undulator entrance to some current point z1. Calculating 
arrival time t(z) and small deflection angle dx/dz through 
the measured field we define the hodograph function 
[2, 3] as 
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where the ܫଵ௬ሺݖሻ is the first integral of the magnetic field: 
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and κ = ω/(2γ2c). We can use this expression to estimate 
the magnetic field error if we draw the curve consisting of 
points with coordinates ReG(z1), ImG(z1). 

CALCULATION OF MEASURED FIELD 
RADIATION HODOGRAPH  

Let apply the hodograph formula Eq. 5 to the measured 
field of the undulator and then compare with the case of 
ideal field. We can calculate the particle trajectory with a 
1 mm step in the z coordinate (see Fig. 5).  

Let’s calculate the hodograph applying the formula to 
these trajectories. The results are shown in Figs. 6 and 7. 
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Figure 5: Particle transverse deviations multiplied by 
gamma. The red line represents trajectory in the ideal 
field; the blue line is for the measured field. 

Figure 6: Measured and ideal field hodographs. Blue line: 
measured field, red line: ideal field. 

 

Figure 7: Hodographs’ absolute value increments. 

RESULTS 
We can reach the emitted field amplitude maximums at 

ߢ ൌ 88.65݉ିଵ and 88.61݉ିଵ for ideal and measured 
fields accordingly. Maximum amplitude for a measured 
field is equal 0.995 of a maximum amplitude for an ideal 
field. 

Building the emitted amplitude spectrum (Fig. 8), we 
can estimate the relative width of main peak equal 3.2%. 

Figure 8: Radiation spectrum for measured (red) and ideal 
(blue) fields. 
 

From comparing the amplitudes’ maxima for the 
measured and ideal fields, it follows that we cannot 
enhance the spectral intensity in maximum more than by 
1% neither by increasing the precision of magnet 
manufacturing, neither by increasing the precision of their 
spatial placement. That means that the measured field is 
good enough for generation of a monochromatic terahertz 
radiation. 
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