Keyword: brightness
Paper Title Other Keywords Page
THP057 Longitudinal and Transverse Optimization for a High Repetition Rate Injector gun, emittance, electron, cavity 864
 
  • C. F. Papadopoulos, D. Filippetto, R. Huang, G.J. Portmann, H.J. Qian, F. Sannibale, S.P. Virostek, R.P. Wells
    LBNL, Berkeley, California, USA
  • A.C. Bartnik, I.V. Bazarov, B.M. Dunham, C.M. Gulliford, C.E. Mayes
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A. Brachmann, D. Dowell, P. Emma, Z. Li, T.O. Raubenheimer, J.F. Schmerge, T. Vecchione, F. Zhou
    SLAC, Menlo Park, California, USA
  • A. Vivoli
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
The injector is the low energy part of a linac, where space charge and kinematic effects may affect the electron beam quality significantly, and in the case of single pass systems determines the brightness in the downstream components. Following the increasing demand for high repetition rate user facilities, the VHF-gun, a normal conducting, high repetition rate (1 MHz) RF gun operating at 186 MHz has been constructed at LBNL within the APEX project and is under operation. In the current paper, we report on the status of the beam dynamics studies. For this, a multi-objected approach is used, where both the transverse and the longitudinal phase space quality is optimized, as quantified by the transverse emittance and the bunch length and energy spread respectively. We also report on different bunch charge operating modes.