Author: Yavas, O.     [Yavaş, Ö.]
Paper Title Page
MOP062 FEL Proposal Based on CLIC X-Band Structure 186
  • A.A. Aksoy, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • E. Adli
    University of Oslo, Oslo, Norway
  • D. Angal-Kalinin, J.A. Clarke
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.J. Boland, T.K. Charles, R.T. Dowd, G. LeBlanc
    SLSA, Clayton, Australia
  • N. Charitonidis, A. Grudiev, A. Latina, D. Schulte, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • G. D'Auria, S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • W. Fang, Q. Gu
    SINAP, Shanghai, People's Republic of China
  • E.N. Gazis
    National Technical University of Athens, Athens, Greece
  • M. Jacewicz, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • Z. Nergiz
    Nigde University, Nigde, Turkey
  A linear accelerating structure with an average loaded gradient of 100 MV/m at X-Band frequencies has been demonstrated in the CLIC study. Recently, it has been proposed to use this structure to drive an FEL linac. In contrast to CLIC the linac would be powered by klystrons not by an RF source created by a drive beam. The main advantage of this proposal is achieving the required energies in a very short distance, thus the facility would be rather compact. In this study, we present the structure choice and conceptual design parameters of a facility which could generate laser photon pulses below Angstrom. Shorter wavelengths can also be reached with slightly increasing the energy.  
TUP089 The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) Project 585
  • A.A. Aksoy, Ö. Karslı, Ç. Kaya, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • P. Arıkan
    Gazi University, Faculty of Arts and Sciences, Teknikokullar, Ankara, Turkey
  • S. Özkorucuklu
    Istanbul University, Istanbul, Turkey
  Funding: Work is supported by Ministry of Development of Turkey with Grand No: DPT2006K-120470
The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) which is proposed as a first facility of Turkish Accelerator Center (TAC) Project will operate two Infra-Red Free Electron Lasers (IR-FEL) covering the range of 3-250 microns. The facility will consist of an injector fed by a thermionic triode gun with two-stage RF bunch compression, two superconducting accelerating modules operating at continuous wave (CW) mode and two independent optical resonator systems with different undulator period lengths. The electron beam will also be used to generate Bremsstrahlung radiation. The facility aims to be first user laboratory in the region of Turkey in which both electromagnetic radiation and particles will be used. In this paper, we discuss design goals of the project and present status and road map of the project.