Author: Vagin, P.
Paper Title Page
Coherent Accelerator-based High Field THz Radiation at FLASH II  
  • T. Golz, V. B. Asgekar, B. Faatz, G. Geloni, N. Stojanovic, M. Tischer, P. Vagin, M. Vogt
    DESY, Hamburg, Germany
  • M. Gensch
    HZDR, Dresden, Germany
  • P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  Funding: BMBF grant no. 05K10CHC + 05K10KEB + 05K12CH4
Linear accelerator based light sources with their tunable broad spectral range (THz to hard X-rays regime) and their ability to generate ultra-short pulses with peak intensities many orders of magnitude higher then synchrotron sources, gave rise to a new field of ultrafast physics. In the THz range, the ability of 4th gen. light sources to generate pulses with e-field strengths up to 1 GV/m opened the door to the field of non-linear THz spectroscopy and THz-controlled material science. The main advantage of accelerator-based THz is its scaleability. As the process is not bound to a particular medium, but occurs in the accelerator vacuum, it bypasses the limitation of table top sources. In addition, it has been demonstrated that coherent THz radiation can be generated along femtosecond X-ray pulses in 4th Generation X-ray Light sources such as FLASH [1,2,3] and LCLS [4]. This opens up the opportunity for naturally synchronized THz pump X-ray probe experiments on a few femtosecond time scale [1,2,4]. Here we present the design for the THz source at FLASH2, which takes new findings [5] and challenges into account that we face during the radiation transport to the experimental hall.
MOP008 Temperature Effects of the FLASH2 Undulators 34
  • M. Tischer, A. Schöps, P. Vagin
    DESY, Hamburg, Germany
  FELs are very sensitive to small changes in the resonance condition of the emitted radiation. As a consequence, permanent magnet undulators in FELs usually require extensive temperature control in order to assure stable operation conditions. In principle, the temperature dependence of permanent magnet material is well known but more things need to be considered like different thermal expansion of various mechanical parts or thermally induced deformation which do not only affect the K parameter but also the field quality. We have performed temperature dependent magnetic measurements in a range from 19 to 28 degrees Celsius and have analyzed the magnetic performance of the undulator. The results of this case study can be transferred to all FLASH2 undulators and shall allow for a simple temperature dependent gap correction in order to make the spectral properties insensitive to temperature changes of the insertion devices.